On Schr o<spacing diaeresis>dinger-Poisson equations with a critical nonlocal term

被引:0
作者
Zhang, Xinyi [1 ]
Zhang, Jian [1 ]
机构
[1] China Univ Petr, Coll Sci, Qingdao 266580, Shandong, Peoples R China
来源
AIMS MATHEMATICS | 2024年 / 9卷 / 05期
关键词
Schrodinger-Poisson equation; critical nonlocal term; critical nonlinearity; variational method; SCALAR FIELD-EQUATIONS; KLEIN-GORDON-MAXWELL; SYMMETRIC-SOLUTIONS; POSITIVE SOLUTIONS; STANDING WAVES; SOLITARY WAVES; EXISTENCE;
D O I
10.3934/math.2024545
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the following non -autonomous Schr delta dinger-Poisson equation with a critical nonlocal term and a critical nonlinearity: { -triangle u+V(x)u+lambda phi|u|3u=f(u)+(u+)5,inR(3) -triangle phi=|u|5,inR(3) First, we consider the case that the nonlinearity satisfies the Berestycki-Lions type condition with critical growth. Second, we consider the case that intV-1(0) is contained in a spherical shell. By using variational methods, we obtain the existence and asymptotic behavior of positive solutions.
引用
收藏
页码:11122 / 11138
页数:17
相关论文
共 31 条
[1]  
Ambrosetti A., 1973, Journal of Functional Analysis, V14, P349, DOI 10.1016/0022-1236(73)90051-7
[2]   Ground state solutions for the nonlinear Schrodinger-Maxwell equations [J].
Azzollini, A. ;
Pomponio, A. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 345 (01) :90-108
[3]   On the Schrodinger-Maxwell equations under the effect of a general nonlinear term [J].
Azzollini, A. ;
d'Avenia, P. ;
Pomponio, A. .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2010, 27 (02) :779-791
[4]  
Benci V., 1998, TOPOL METHOD NONL AN, V11, P283, DOI [10.12775/TMNA.1998.019, DOI 10.12775/TMNA.1998.019]
[5]  
BERESTYCKI H, 1983, ARCH RATION MECH AN, V82, P313
[6]  
BERESTYCKI H, 1983, CR ACAD SCI I-MATH, V297, P307
[7]   Standing waves for nonlinear Schrodinger equations with a general nonlinearity [J].
Byeon, Jaeyoung ;
Jeanjean, Louis .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2007, 185 (02) :185-200
[8]  
Coclite G.M., 2003, Commun. Appl. Anal, V7, P417
[9]   Solitary waves for nonlinear Klein-Gordon-Maxwell and Schrodinger-Maxwell equations [J].
D'Aprile, T ;
Mugnai, D .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2004, 134 :893-906
[10]   Non-existence results for the coupled Klein-Gordon-Maxwell equations [J].
D'Aprile, T ;
Mugnai, D .
ADVANCED NONLINEAR STUDIES, 2004, 4 (03) :307-322