Monotonic convergence of positive radial solutions for general quasilinear elliptic systems

被引:1
作者
Devine, Daniel [1 ]
Karageorgis, Paschalis [1 ]
机构
[1] Trinity Coll Dublin, Sch Math, Dublin, Ireland
关键词
asymptotic behavior; elliptic systems; p-Laplace operator; radial solutions; EXISTENCE; EQUATIONS; NONEXISTENCE;
D O I
10.1088/1361-6544/ad2633
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the asymptotic behavior of positive radial solutions for quasilinear elliptic systems that have the form { Delta(p)u = c(1)|x|(m)(1 )& sdot; g(1 )(v) & sdot; | del u|(alpha )in R-n, { Delta(p)v = c(2)|x|(m)(2 )& sdot; g(2) (v) & sdot;g(3) (| del u| in R-n, where Delta(p) denotes the p-Laplace operator, p > 1, n >= 2 , c(1), c(2 )> 0 and m(1), m(2), alpha >= 0 . For a general class of functions g(j) which grow polynomially, we show that every non-constant positive radial solution (u, v) asymptotically approaches (u(0), v(0)) = (C-lambda|x|(lambda), C-mu|x|(mu)) for some parameters lambda,mu,C-lambda,C-mu > 0 . In fact, the convergence is monotonic in the sense that both u/u(0) and v/v(0 )are decreasing. We also obtain similar results for more general systems.
引用
收藏
页数:14
相关论文
共 22 条
[1]   Existence and a priori estimates for positive solutions of p-Laplace systems [J].
Azizieh, U ;
Clément, P ;
Mitidieri, E .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2002, 184 (02) :422-442
[2]  
Bidaut-Veron M.-F., 1999, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), V28, P229
[3]  
Bidaut-Veron M.-F., 2000, Adv. Differential Equations, V5, P147, DOI [https://doi.org/10.57262/ade/1356651382, DOI 10.57262/ADE/1356651382]
[4]  
Bidaut-Veron MF, 2010, ADV DIFFERENTIAL EQU, V15, P1033
[5]   Nonexistence results and estimates for some nonlinear elliptic problems [J].
Bidaut-Véron, MF ;
Pohozaev, S .
JOURNAL D ANALYSE MATHEMATIQUE, 2001, 84 (1) :1-49
[6]   Existence of positive solutions for a nonvariational quasilinear elliptic system [J].
Clément, P ;
Fleckinger, J ;
Mitidieri, E ;
de Thélin, F .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2000, 166 (02) :455-477
[7]  
Devine D, 2023, Arxiv, DOI arXiv:2310.11547
[8]   Large solutions for a system of elliptic equations arising from fluid dynamics [J].
Díaz, JI ;
Lazzo, M ;
Schmidt, PG .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2005, 37 (02) :490-513
[9]   Supercritical biharmonic equations with power-type nonlinearity [J].
Ferrero, Alberto ;
Grunau, Hans-Christoph ;
Karageorgis, Paschalis .
ANNALI DI MATEMATICA PURA ED APPLICATA, 2009, 188 (01) :171-185
[10]   Coercive elliptic systems with gradient terms [J].
Filippucci, Roberta ;
Vinti, Federico .
ADVANCES IN NONLINEAR ANALYSIS, 2017, 6 (02) :165-182