Development of a novel machine learning model based on laboratory and imaging indices to predict acute cardiac injury in cancer patients with COVID-19 infection: a retrospective observational study

被引:1
作者
Wan, Guangcai [1 ]
Wu, Xuefeng [1 ]
Zhang, Xiaowei [1 ]
Sun, Hongshuai [1 ]
Yu, Xiuyan [1 ]
机构
[1] Jilin Canc Hosp, Dept Clin Lab, Changchun 130012, Peoples R China
关键词
COVID-19; Cancer; Acute cardiac injury; Machine learning; Explainability;
D O I
10.1007/s00432-023-05417-3
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
PurposeDue to the increased risk of acute cardiac injury (ACI) and poor prognosis in cancer patients with COVID-19 infection, our aim was to develop a novel and interpretable model for predicting ACI occurrence in cancer patients with COVID-19 infection.MethodsThis retrospective observational study screened 740 cancer patients with COVID-19 infection from December 2022 to April 2023. The least absolute shrinkage and selection operator (LASSO) regression was used for the preliminary screening of the indices. To enhance the model accuracy, we introduced an alpha index to further screen and rank the indices based on their significance. Random forest (RF) was used to construct the prediction model. The Shapley Additive Explanation (SHAP) and Local Interpretable Model-Agnostic Explanation (LIME) methods were utilized to explain the model.ResultsAccording to the inclusion criteria, 201 cancer patients with COVID-19, including 36 variables indices, were included in the analysis. The top eight indices (albumin, lactate dehydrogenase, cystatin C, neutrophil count, creatine kinase isoenzyme, red blood cell distribution width, D-dimer and chest computed tomography) for predicting the occurrence of ACI in cancer patients with COVID-19 infection were included in the RF model. The model achieved an area under curve (AUC) of 0.940, an accuracy of 0.866, a sensitivity of 0.750 and a specificity of 0.900. The calibration curve and decision curve analysis showed good calibration and clinical practicability. SHAP results demonstrated that albumin was the most important index for predicting the occurrence of ACI. LIME results showed that the model could predict the probability of ACI in each cancer patient infected with COVID-19 individually.ConclusionWe developed a novel machine-learning model that demonstrates high explainability and accuracy in predicting the occurrence of ACI in cancer patients with COVID-19 infection, using laboratory and imaging indices.
引用
收藏
页码:17039 / 17050
页数:12
相关论文
共 42 条
[1]   Cardiac MRI in patients with COVID-19 infection [J].
Abdeldayem, Emad H. ;
Mosaad, Basant M. Raief M. ;
Yassin, Aya ;
Abdelrahman, Ahmed S. .
EUROPEAN RADIOLOGY, 2023, 33 (06) :3867-3877
[2]   Role of SARS-CoV-2-induced cytokines and growth factors in coagulopathy and thromboembolism [J].
Ahmad, Firdos ;
Kannan, Meganathan ;
Ansari, Abdul W. W. .
CYTOKINE & GROWTH FACTOR REVIEWS, 2022, 63 :58-68
[3]   Prevalence, Characteristics, and Outcomes of COVID-19-Associated Acute Myocarditis [J].
Ammirati, Enrico ;
Lupi, Laura ;
Palazzini, Matteo ;
Hendren, Nicholas S. ;
Grodin, Justin L. ;
Cannistraci, Carlo, V ;
Schmidt, Matthieu ;
Hekimian, Guillaume ;
Peretto, Giovanni ;
Bochaton, Thomas ;
Hayek, Ahmad ;
Piriou, Nicolas ;
Leonardi, Sergio ;
Guida, Stefania ;
Turco, Annalisa ;
Sala, Simone ;
Uribarri, Aitor ;
Van de Heyning, Caroline M. ;
Mapelli, Massimo ;
Campodonico, Jeness ;
Pedrotti, Patrizia ;
Sanchez, Maria Isabel Barrionuevo ;
Sole, Albert Ariza ;
Marini, Marco ;
Matassini, Maria Vittoria ;
Vourc'h, Mickael ;
Cannata, Antonio ;
Bromage, Daniel, I ;
Briguglia, Daniele ;
Salamanca, Jorge ;
Diez-Villanueva, Pablo ;
Lehtonen, Jukka ;
Huang, Florent ;
Russel, Stephanie ;
Soriano, Francesco ;
Turrini, Fabrizio ;
Cipriani, Manlio ;
Bramerio, Manuela ;
Di Pasquale, Mattia ;
Grosu, Aurelia ;
Senni, Michele ;
Farina, Davide ;
Agostoni, Piergiuseppe ;
Rizzo, Stefania ;
De Gaspari, Monica ;
Marzo, Francesca ;
Duran, Jason M. ;
Adler, Eric D. ;
Giannattasio, Cristina ;
Basso, Cristina .
CIRCULATION, 2022, 145 (15) :1123-1139
[4]   Early prediction of COVID-19 outcome using artificial intelligence techniques and only five laboratory indices [J].
Asteris, Panagiotis G. ;
Kokoris, Styliani ;
Gavriilaki, Eleni ;
Tsoukalas, Markos Z. ;
Houpas, Panagiotis ;
Paneta, Maria ;
Koutzas, Andreas ;
Argyropoulos, Theodoros ;
Alkayem, Nizar Faisal ;
Armaghani, Danial J. ;
Bardhan, Abidhan ;
Cavaleri, Liborio ;
Cao, Maosen ;
Mansouri, Iman ;
Mohammed, Ahmed Salih ;
Samui, Pijush ;
Gerber, Gloria ;
Boumpas, Dimitrios T. ;
Tsantes, Argyrios ;
Terpos, Evangelos ;
Dimopoulos, Meletios A. .
CLINICAL IMMUNOLOGY, 2023, 246
[5]   Artificial intelligence-driven assessment of radiological images for COVID-19 [J].
Bouchareb, Yassine ;
Khaniabadi, Pegah Moradi ;
Al Kindi, Faiza ;
Al Dhuhli, Humoud ;
Shiri, Isaac ;
Zaidi, Habib ;
Rahmim, Arman .
COMPUTERS IN BIOLOGY AND MEDICINE, 2021, 136
[6]   Integrated Analysis of Bulk RNA-Seq and Single-Cell RNA-Seq Unravels the Influences of SARS-CoV-2 Infections to Cancer Patients [J].
Chen, Yu ;
Qin, Yujia ;
Fu, Yuanyuan ;
Gao, Zitong ;
Deng, Youping .
INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2022, 23 (24)
[7]  
Collins GS, 2015, ANN INTERN MED, V162, P55, DOI [10.7326/M14-0697, 10.1111/eci.12376, 10.1186/s12916-014-0241-z, 10.1136/bmj.g7594, 10.1016/j.jclinepi.2014.11.010, 10.7326/M14-0698, 10.1016/j.eururo.2014.11.025, 10.1002/bjs.9736, 10.1038/bjc.2014.639]
[8]   Retrospective Study on the Influencing Factors and Prediction of Hospitalization Expenses for Chronic Renal Failure in China Based on Random Forest and LASSO Regression [J].
Dai, Pingping ;
Chang, Weifu ;
Xin, Zirui ;
Cheng, Haiwei ;
Ouyang, Wei ;
Luo, Aijing .
FRONTIERS IN PUBLIC HEALTH, 2021, 9 :678276
[9]   Benchmarking of Machine Learning classifiers on plasma proteomic for COVID-19 severity prediction through interpretable artificial intelligence [J].
Dimitsaki, Stella ;
Gavriilidis, George I. ;
Dimitriadis, Vlasios K. ;
Natsiavas, Pantelis .
ARTIFICIAL INTELLIGENCE IN MEDICINE, 2023, 137
[10]   Machine learning for diagnosis of myocardial infarction using cardiac troponin concentrations [J].
Doudesis, Dimitrios M. ;
Lee, Kuan Ken ;
Boeddinghaus, Jasper ;
Bularga, Anda ;
Ferry, Amy E. ;
Tuck, Chris D. ;
Lowry, Matthew T. H. ;
Lopez-Ayala, Pedro ;
Nestelberger, Thomas ;
Koechlin, Luca E. ;
Bernabeu, Miguel ;
Neubeck, Lis ;
Anand, Atul ;
Schulz, Karen ;
Apple, Fred ;
Parsonage, William J. ;
Greenslade, Jaimi ;
Cullen, Louise ;
Pickering, John ;
Than, Martin O. ;
Gray, Alasdair ;
Mueller, Christian W. ;
Mills, Nicholas ;
CoDE-ACS Investigators .
NATURE MEDICINE, 2023, 29 (05) :1201-+