Automatic Selection of Compiler Optimizations by Machine Learning

被引:0
|
作者
Peker, Melih [1 ]
Ozturk, Ozcan [1 ]
Yildirim, Suleyman [2 ]
Ozturk, Mahiye Uluyagmur [2 ]
机构
[1] Bilkent Univ, Bilgisayar Muhendisligi Bolumu, Bilkent, Turkiye
[2] Huawei Turkiye Ar Ge Merkezi, Istanbul, Turkiye
来源
2023 31ST SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE, SIU | 2023年
关键词
GCC; Compilers; Machine Learning; Optimization;
D O I
10.1109/SIU59756.2023.10223902
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Many widely used telecommunications applications have extremely long run times. Therefore, faster and more efficient execution of these codes on the same hardware is important in critical telecommunication applications such as base stations. Compilers greatly affect the properties of the executable program to be created. It is possible to change properties such as compilation speed, execution time, power consumption and code size using compiler flags. This study aims to find the set of flags that will provide the shortest run time among hundreds of compiler flag combinations in GCC using code flow analysis, loop analysis and machine learning methods without running the program.
引用
收藏
页数:4
相关论文
共 50 条
  • [41] Automatic Image Selection Model Based on Machine Learning for Endobronchial Ultrasound Strain Elastography Videos
    Zhi, Xinxin
    Li, Jin
    Chen, Junxiang
    Wang, Lei
    Xie, Fangfang
    Dai, Wenrui
    Sun, Jiayuan
    Xiong, Hongkai
    FRONTIERS IN ONCOLOGY, 2021, 11
  • [42] Milepost GCC: Machine Learning Enabled Self-tuning Compiler
    Fursin, Grigori
    Kashnikov, Yuriy
    Memon, Abdul Wahid
    Chamski, Zbigniew
    Temam, Olivier
    Namolaru, Mircea
    Yom-Tov, Elad
    Mendelson, Bilha
    Zaks, Ayal
    Courtois, Eric
    Bodin, Francois
    Barnard, Phil
    Ashton, Elton
    Bonilla, Edwin
    Thomson, John
    Williams, Christopher K. I.
    O'Boyle, Michael
    INTERNATIONAL JOURNAL OF PARALLEL PROGRAMMING, 2011, 39 (03) : 296 - 327
  • [43] Automatic Selection of Parallel Data for Machine Translation
    Mouratidis, Despoina
    Kermanidis, Katia Lida
    ARTIFICIAL INTELLIGENCE APPLICATIONS AND INNOVATIONS, AIAI 2018, 2018, 520 : 146 - 156
  • [44] Automatic Selection of Sparse Triangular Linear System Solvers on GPUs through Machine Learning Techniques
    Dufrechou, Ernesto
    Ezzatti, Pablo
    Quintana-Orti, Enrique S.
    2019 31ST INTERNATIONAL SYMPOSIUM ON COMPUTER ARCHITECTURE AND HIGH PERFORMANCE COMPUTING (SBAC-PAD 2019), 2019, : 41 - 47
  • [45] AUTOMATIC SELECTION AND ANALYSIS OF VERB AND ADJECTIVE SYNONYMS FROM JAPANESE SENTENCES USING MACHINE LEARNING
    Murata, Masaki
    Orikane, Kazuki
    Akae, Ryota
    INTERNATIONAL JOURNAL OF INNOVATIVE COMPUTING INFORMATION AND CONTROL, 2019, 15 (06): : 2135 - 2147
  • [46] Explainability in wind farm planning: A machine learning framework for automatic site selection of wind farms
    Bilgili, Atakan
    Arda, Tumay
    Kilic, Batuhan
    ENERGY CONVERSION AND MANAGEMENT, 2024, 309
  • [47] Milepost GCC: Machine Learning Enabled Self-tuning Compiler
    Grigori Fursin
    Yuriy Kashnikov
    Abdul Wahid Memon
    Zbigniew Chamski
    Olivier Temam
    Mircea Namolaru
    Elad Yom-Tov
    Bilha Mendelson
    Ayal Zaks
    Eric Courtois
    Francois Bodin
    Phil Barnard
    Elton Ashton
    Edwin Bonilla
    John Thomson
    Christopher K. I. Williams
    Michael O’Boyle
    International Journal of Parallel Programming, 2011, 39 : 296 - 327
  • [48] Well-Production Forecasting Using Machine Learning with Feature Selection and Automatic Hyperparameter Optimization
    Zhu, Ruibin
    Li, Ning
    Duan, Yongqiang
    Li, Gaofeng
    Liu, Guohua
    Qu, Fengjiao
    Long, Changjun
    Wang, Xin
    Liao, Qinzhuo
    Li, Gensheng
    ENERGIES, 2025, 18 (01)
  • [49] Machine Learning Based Automatic Diagnosis in Mobile Communication Networks
    Chen, Kuo-Ming
    Chang, Tsung-Hui
    Wang, Kai-Cheng
    Lee, Ta-Sung
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2019, 68 (10) : 10081 - 10093
  • [50] Applications of Machine Learning and Deep Learning in Antenna Design, Optimization, and Selection: A Review
    Sarker, Nayan
    Podder, Prajoy
    Mondal, M. Rubaiyat Hossain
    Shafin, Sakib Shahriar
    Kamruzzaman, Joarder
    IEEE ACCESS, 2023, 11 : 103890 - 103915