Automatic Selection of Compiler Optimizations by Machine Learning

被引:0
|
作者
Peker, Melih [1 ]
Ozturk, Ozcan [1 ]
Yildirim, Suleyman [2 ]
Ozturk, Mahiye Uluyagmur [2 ]
机构
[1] Bilkent Univ, Bilgisayar Muhendisligi Bolumu, Bilkent, Turkiye
[2] Huawei Turkiye Ar Ge Merkezi, Istanbul, Turkiye
来源
2023 31ST SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE, SIU | 2023年
关键词
GCC; Compilers; Machine Learning; Optimization;
D O I
10.1109/SIU59756.2023.10223902
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Many widely used telecommunications applications have extremely long run times. Therefore, faster and more efficient execution of these codes on the same hardware is important in critical telecommunication applications such as base stations. Compilers greatly affect the properties of the executable program to be created. It is possible to change properties such as compilation speed, execution time, power consumption and code size using compiler flags. This study aims to find the set of flags that will provide the shortest run time among hundreds of compiler flag combinations in GCC using code flow analysis, loop analysis and machine learning methods without running the program.
引用
收藏
页数:4
相关论文
共 50 条
  • [21] Meta optimization: Improving compiler heuristics with machine learning
    Stephenson, M
    Amarasinghe, S
    Martin, M
    O'Reilly, UM
    ACM SIGPLAN NOTICES, 2003, 38 (05) : 77 - 90
  • [22] A Tensor Compiler for Unified Machine Learning Prediction Serving
    Nakandala, Supun
    Saur, Karla
    Yu, Gyeong-In
    Karanasos, Konstantinos
    Curino, Carlo
    Weimer, Markus
    Interlandi, Matteo
    PROCEEDINGS OF THE 14TH USENIX SYMPOSIUM ON OPERATING SYSTEMS DESIGN AND IMPLEMENTATION (OSDI '20), 2020, : 899 - 917
  • [23] Optimizing Sparse Linear Algebra Through Automatic Format Selection and Machine Learning
    Stylianou, Christodoulos
    Weiland, Michele
    2023 IEEE INTERNATIONAL PARALLEL AND DISTRIBUTED PROCESSING SYMPOSIUM WORKSHOPS, IPDPSW, 2023, : 734 - 743
  • [24] Automatic particle selection from electron micrographs using machine learning techniques
    Sorzano, C. O. S.
    Recarte, E.
    Alcorlo, M.
    Bilbao-Castro, J. R.
    San-Martin, C.
    Marabini, R.
    Carazo, J. M.
    JOURNAL OF STRUCTURAL BIOLOGY, 2009, 167 (03) : 252 - 260
  • [25] Bystander Detection: Automatic Labeling Techniques using Feature Selection and Machine Learning
    Gupta, Anamika
    Thakkar, Khushboo
    Bhasin, Veenu
    Tiwari, Aman
    Mathur, Vibhor
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2024, 15 (01) : 1135 - 1143
  • [26] Pinhao: An Auto-tunning System for Compiler Optimizations Guided by Hot Functions
    Siraichi, Marcos Yukio
    Segawa Tonetti, Caio Henrique
    da Silva, Anderson Faustino
    JOURNAL OF UNIVERSAL COMPUTER SCIENCE, 2019, 25 (01) : 42 - 72
  • [27] Quantifying Information Leakage for Security Verification of Compiler Optimizations
    Panigrahi, Priyanka
    Paul, Abhik
    Karfa, Chandan
    IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, 2022, 41 (11) : 4385 - 4396
  • [28] Materialization Optimizations for Feature Selection Workloads
    Zhang, Ce
    Kumar, Arun
    Re, Christopher
    ACM TRANSACTIONS ON DATABASE SYSTEMS, 2016, 41 (01):
  • [29] Using Machine Learning to Predict the Code Size Impact of Duplication Heuristics in a Dynamic Compiler
    Mosaner, Raphael
    Leopoldseder, David
    Stadler, Lukas
    Moessenboeck, Hanspeter
    PROCEEDINGS OF THE 18TH ACM SIGPLAN INTERNATIONAL CONFERENCE ON MANAGED PROGRAMMING LANGUAGES AND RUNTIMES (MPLR '2021), 2021, : 127 - 135
  • [30] Machine learning with automatic feature selection for multi-class protein fold classification
    Huang, CD
    Liang, SF
    Lin, CT
    Wu, RC
    JOURNAL OF INFORMATION SCIENCE AND ENGINEERING, 2005, 21 (04) : 711 - 720