Automatic Selection of Compiler Optimizations by Machine Learning

被引:0
|
作者
Peker, Melih [1 ]
Ozturk, Ozcan [1 ]
Yildirim, Suleyman [2 ]
Ozturk, Mahiye Uluyagmur [2 ]
机构
[1] Bilkent Univ, Bilgisayar Muhendisligi Bolumu, Bilkent, Turkiye
[2] Huawei Turkiye Ar Ge Merkezi, Istanbul, Turkiye
来源
2023 31ST SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE, SIU | 2023年
关键词
GCC; Compilers; Machine Learning; Optimization;
D O I
10.1109/SIU59756.2023.10223902
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Many widely used telecommunications applications have extremely long run times. Therefore, faster and more efficient execution of these codes on the same hardware is important in critical telecommunication applications such as base stations. Compilers greatly affect the properties of the executable program to be created. It is possible to change properties such as compilation speed, execution time, power consumption and code size using compiler flags. This study aims to find the set of flags that will provide the shortest run time among hundreds of compiler flag combinations in GCC using code flow analysis, loop analysis and machine learning methods without running the program.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] An Automatic Tool for Tuning Compiler Optimizations
    Plotnikov, Dmitry
    Melnik, Dmitry
    Vardanyan, Mamikon
    Buchatskiy, Ruben
    Zhuykov, Roman
    2013 COMPUTER SCIENCE AND INFORMATION TECHNOLOGIES (CSIT), 2013,
  • [2] Automatic Tuning of Compiler Optimizations and Analysis of their Impact
    Plotnikov, Dmitry
    Melnik, Dmitry
    Vardanyan, Mamikon
    Buchatskiy, Ruben
    Zhuykov, Roman
    Lee, Je-Hyung
    2013 INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE, 2013, 18 : 1312 - 1321
  • [3] A Survey on Compiler Autotuning using Machine Learning
    Ashouri, Amir H.
    Killian, William
    Cavazos, John
    Palermo, Gianluca
    Silvano, Cristina
    ACM COMPUTING SURVEYS, 2019, 51 (05)
  • [4] Machine Learning in Compiler Optimization
    Wang, Zheng
    O'Boyle, Michael
    PROCEEDINGS OF THE IEEE, 2018, 106 (11) : 1879 - 1901
  • [5] Mitigating the Compiler Optimization Phase-Ordering Problem using Machine Learning
    Kulkarni, Sameer
    Cavazos, John
    ACM SIGPLAN NOTICES, 2012, 47 (10) : 147 - 162
  • [6] Towards Compile-Time-Reducing Compiler Optimization Selection via Machine Learning
    Jayatilaka, Tarindu
    Ueno, Hideto
    Georgakoudis, Giorgis
    Park, EunJung
    Doerfert, Johannes
    50TH INTERNATIONAL CONFERENCE ON PARALLEL PROCESSING WORKSHOP PROCEEDINGS - ICPP WORKSHOPS '21, 2021,
  • [7] Improving Vectorization Heuristics in a Dynamic Compiler with Machine Learning Models
    Mosaner, Raphael
    Barany, Gergoe
    Leopoldseder, David
    Moessenboeck, Hanspeter
    PROCEEDINGS OF THE 14TH ACM SIGPLAN INTERNATIONAL WORKSHOP ON VIRTUAL MACHINES AND INTERMEDIATE LANGUAGES, VMIL 2022, 2022, : 36 - 47
  • [8] Automatic Selection of Tuning Plugins in PTF Using Machine Learning
    Mijakovic, Robert
    Gerndt, Michael
    2020 IEEE 34TH INTERNATIONAL PARALLEL AND DISTRIBUTED PROCESSING SYMPOSIUM WORKSHOPS (IPDPSW 2020), 2020, : 349 - 358
  • [9] Fast Compiler Optimization Flag Selection
    Peker, Melih
    Ozturk, Ozcan
    PROCEEDINGS OF THE 2023 34TH INTERNATIONAL WORKSHOP ON RAPID SYSTEM PROTOTYPING, RSP 2023, 2023,
  • [10] Automatic Selection of Machine Learning Models for Armed People Identification
    Javier Amado-Garfias, Alonso
    Conant-Pablos, Santiago Enrique
    Ortiz-Bayliss, Jose Carlos
    Terashima-Marin, Hugo
    IEEE ACCESS, 2024, 12 : 175952 - 175968