QTL-seq Identifies Genomic Regions Associated with Resistance to Dirty Panicle Disease in Rice

被引:6
作者
Riangwong, Kanamon [1 ]
Aesomnuk, Wanchana [2 ]
Sonsom, Yupin [2 ]
Siangliw, Meechai [3 ]
Unartngam, Jintana [4 ]
Toojinda, Theerayut [3 ]
Wanchana, Samart [3 ]
Arikit, Siwaret [2 ,5 ]
机构
[1] Kasetsart Univ, Interdisciplinary Grad Program Genet Engn, Bangkok 10900, Thailand
[2] Kasetsart Univ, Rice Sci Ctr, Kamphaeng Saen Campus, Nakhon Pathom 73140, Thailand
[3] Natl Sci & Technol Dev Agcy NSTDA, Natl Ctr Genet Engn & Biotechnol BIOTEC, Khlong Luang 12120, Pathum Thani, Thailand
[4] Kasetsart Univ, Fac Agr Kamphaeng Saen, Dept Plant Pathol, Kamphaeng Saen Campus, Nakhon Pathom 73140, Thailand
[5] Kasetsart Univ, Fac Agr Kamphaeng Saen, Dept Agron, Kamphaeng Saen Campus, Nakhon Pathom 73140, Thailand
来源
AGRONOMY-BASEL | 2023年 / 13卷 / 07期
关键词
Oryza sativa L; dirty panicle; Cirvularia lunata; Bipolaris oryzae; QTL-seq; MARKER-ASSISTED SELECTION; QUANTITATIVE TRAIT LOCI; PLANT; GENES; TOLERANCE; DROUGHT; WEIGHT;
D O I
10.3390/agronomy13071905
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
Dirty panicle disease is one of the most important diseases that can cause yield losses in rice production. Despite the severity of the disease, the molecular basis of resistance to the pathogen is poorly understood. Using QTL-seq with an F-2 population, we identified three genomic regions on chromosomes 1, 9, and 10, namely qDP1, qDP9, and qDP10. These regions are significantly associated with resistance to dirty panicle disease caused by two fungal pathogens, Bioplaris oryzae and Cirvularia lunata. qDP1 was significantly associated only with resistance to B. oryzae, whereas qDP9 and qDP10 were significantly associated with both B. oryzae and C. lunata. We also developed KASP markers for each QTL detected and validated them in the F-2 population. The markers were able to explain phenotypic variation in a range of 5.87-15.20%. Twelve potential candidate genes with annotated functions as resistance-related genes were proposed. These candidate genes include those encoding RLK, MATE, WAK, NBS-LRR, subtilisin-like protease, and ankyrin repeat proteins. The results of this study provide insights into the genetic mechanism of dirty panicles in rice and will be useful for future breeding programs for dirty panicle resistance. This is the first report of QTLs associated with resistance to dirty panicle disease in rice.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] QTL-seq and marker development for resistance to head splitting in cabbage
    Xiaowei Zhu
    Xiang Tai
    Yunying Ren
    Min Wang
    Jinxiu Chen
    Tianyue Bo
    [J]. Euphytica, 2022, 218
  • [22] QTL-seq analysis identifies two genomic regions determining the heading date of foxtail millet, Setaria italica (L.) P.Beauv.
    Yoshitsu, Yuki
    Takakusagi, Masato
    Abe, Akira
    Takagi, Hiroki
    Uemura, Aiko
    Yaegashi, Hiroki
    Terauchi, Ryohei
    Takahata, Yoshihito
    Hatakeyama, Katsunori
    Yokoi, Shuji
    [J]. BREEDING SCIENCE, 2017, 67 (05) : 518 - 527
  • [23] QTL-Seq Approach Identified Pi63 Conferring Blast Resistance at the Seedling and Tillering Stages of Thai Indigenous Rice Variety "Phaladum"
    Netpakdee, Chaiwat
    Mathasiripakorn, Sittiwut
    Sribunrueang, Arthit
    Chankaew, Sompong
    Monkham, Tidarat
    Arikit, Siwaret
    Sanitchon, Jirawat
    [J]. AGRICULTURE-BASEL, 2022, 12 (08):
  • [24] QTL-seq approach identified genomic regions and diagnostic markers for rust and late leaf spot resistance in groundnut (Arachis hypogaea L.)
    Pandey, Manish K.
    Khan, Aamir W.
    Singh, Vikas K.
    Vishwakarma, Manish K.
    Shasidhar, Yaduru
    Kumar, Vinay
    Garg, Vanika
    Bhat, Ramesh S.
    Chitikineni, Annapurna
    Janila, Pasupuleti
    Guo, Baozhu
    Varshney, Rajeev K.
    [J]. PLANT BIOTECHNOLOGY JOURNAL, 2017, 15 (08) : 927 - 941
  • [25] QTL-seq identifies and QTL mapping refines genomic regions conferring resistance to Fusarium oxysporum f. sp. niveum race 2 in cultivated watermelon [Citrullus lanatus (Thunb.) Matsum & Nakai]
    Pal, Saheb
    Rao, Eguru Sreenivasa
    Reddy, D. C. Lakshmana
    Dayanandhi, Ealangovan
    [J]. SCIENTIA HORTICULTURAE, 2023, 319
  • [26] QTL-Seq identifies quantitative trait loci of relative electrical conductivity associated with heat tolerance in bottle gourd (Lagenaria siceraria)
    Song, Hui
    Huang, Yunping
    Gu, Binquan
    [J]. PLOS ONE, 2020, 15 (11):
  • [27] QTL-Seq-based genetic analysis identifies a major genomic region governing dwarfness in rice (Oryza sativa L.)
    Kadambari, Gopalakrishnamurty
    Vemireddy, Lakshminarayana R.
    Srividhya, Akkareddy
    Nagireddy, Ranjithkumar
    Jena, Siddhartha Swarup
    Gandikota, Mahendranath
    Patil, Santosh
    Veeraghattapu, Roja
    Deborah, D. A. K.
    Reddy, G. Eswar
    Shake, Maliha
    Dasari, Aleena
    Ramanarao, P. V.
    Durgarani, Ch. V.
    Neeraja, C. N.
    Siddiq, E. A.
    Sheshumadhav, Maganti
    [J]. PLANT CELL REPORTS, 2018, 37 (04) : 677 - 687
  • [28] QTL-Seq Associated With Grain Elongation in Rice (Oryza sativa L.) Using Bulked Segregant Analysis (BSA) Approach
    Johar, Prerna
    Salgotra, Romesh Kumar
    [J]. PLANT BREEDING, 2024,
  • [29] Discovery of genomic regions and candidate genes for grain weight employing next generation sequencing based QTL-seq approach in rice (Oryza sativa L.)
    Reddyyamini Bommisetty
    Navajeet Chakravartty
    Reddaiah Bodanapu
    Jeevula B. Naik
    Sanjib K. Panda
    Sivarama P. Lekkala
    Krishna Lalam
    George Thomas
    S. J. Mallikarjuna
    G. R. Eswar
    Gopalakrishna M. Kadambari
    Swarajyalakshmi N. Bollineni
    Keerthi Issa
    Srividhya Akkareddy
    C. Srilakshmi
    K. Hariprasadreddy
    P. Rameshbabu
    P. Sudhakar
    Saurabh Gupta
    V. B. R. Lachagari
    Lakshminarayana R. Vemireddy
    [J]. Molecular Biology Reports, 2020, 47 : 8615 - 8627
  • [30] Identifying a Major QTL Associated with Salinity Tolerance in Nile Tilapia Using QTL-Seq
    Gu, Xiao Hui
    Jiang, Dan Li
    Huang, Yan
    Li, Bi Jun
    Chen, Chao Hao
    Lin, Hao Ran
    Xia, Jun Hong
    [J]. MARINE BIOTECHNOLOGY, 2018, 20 (01) : 98 - 107