Pixelated Photonic Crystals

被引:1
作者
Mur, Urban [1 ]
Ravnik, Miha [1 ,2 ]
机构
[1] Univ Ljubljana, Fac Math & Phys, Jadranska Cesta 19, Ljubljana 1000, Slovenia
[2] Josef Stefan Inst, Condensed Matter Phys Dept, Jamova Cesta 39, Ljubljana 1000, Slovenia
来源
ADVANCED PHOTONICS RESEARCH | 2023年 / 4卷 / 08期
基金
欧洲研究理事会;
关键词
liquid crystals; photonic crystals; pixels; SPATIAL LIGHT-MODULATOR; ONLY LIQUID-CRYSTAL; BAND-GAP; BIREFRINGENCE; DESIGN;
D O I
10.1002/adpr.202300082
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Photonic crystals can prevent or allow light of certain frequencies to propagate in distinct directions in anomalous and useful ways for use as waveguides, laser cavities, and topological light propagation. However, there exist limited approaches for fundamental reconfiguration of photonic crystals, such as changing the unit cell to various and on-demand geometries and symmetries. This work introduces the concept of pixelated 2D photonic crystals where the variability of the dielectric profile is achieved by a pixelated matrix of the material. Specifically, the cross sections of dielectric cylindrical pillars distributed in a photonic crystal lattice are replaced with pixelated circles using different resolutions and the corresponding band diagrams are calculated. The comparison to the band diagrams of the original structure shows that the original-and today typically used-cylindrical design can be well approximated by as few as 5x5$5 \times 5$ square switchable pixels while retaining less than 1%$$ change in the photonic band structure. Experimental realization of switchable pixelation is proposed based on the liquid crystal display (LCD) technology with high birefringence materials. More generally, the demonstrated approach to reconfigurable 2D photonic crystal based on switchable pixels can enable realization of diverse fundamentally reconfigurable advanced optical materials.
引用
收藏
页数:5
相关论文
共 43 条
[1]   The design of liquid crystalline bistolane-based materials with extremely high birefringence [J].
Arakawa, Yuki ;
Kang, Sungmin ;
Tsuji, Hideto ;
Watanabe, Junji ;
Konishi, Gen-ichi .
RSC ADVANCES, 2016, 6 (95) :92845-92851
[2]   Terahertz properties of liquid crystals doped with ferroelectric BaTiO3 nanoparticles [J].
Chodorow, U. ;
Mavrona, E. ;
Palka, N. ;
Strzezysz, O. ;
Garbat, K. ;
Saitzek, S. ;
Blach, J. F. ;
Apostolopoulos, V. ;
Kaczmarek, M. ;
Parka, J. .
LIQUID CRYSTALS, 2017, 44 (08) :1207-1215
[3]   Lab-on-a-display: a new microparticle manipulation platform using a liquid crystal display (LCD) [J].
Choi, Wonjae ;
Kim, Se-Hwan ;
Jang, Jin ;
Park, Je-Kyun .
MICROFLUIDICS AND NANOFLUIDICS, 2007, 3 (02) :217-225
[4]   High Birefringence Liquid Crystals [J].
Dabrowski, Roman ;
Kula, Przemyslaw ;
Herman, Jakub .
CRYSTALS, 2013, 3 (03) :443-482
[5]   Two-dimensional tunable photonic crystals [J].
Figotin, A ;
Godin, YA ;
Vitebsky, I .
PHYSICAL REVIEW B, 1998, 57 (05) :2841-2848
[6]   Photonic crystal waveguides with semi-slow light and tailored dispersion properties [J].
Frandsen, Lars H. ;
Lavrinenko, Andrei V. ;
Fage-Pedersen, Jacob ;
Borel, Peter I. .
OPTICS EXPRESS, 2006, 14 (20) :9444-9450
[7]   Quasi-two-dimensional Skyrmion lattices in a chiral nematic liquid crystal [J].
Fukuda, Jun-ichi ;
Zumer, Slobodan .
NATURE COMMUNICATIONS, 2011, 2
[8]   Super high birefringence isothiocyanato biphenyl-bistolane liquid crystals [J].
Gauza, S ;
Wen, CH ;
Wu, ST ;
Janarthanan, N ;
Hsu, CS .
JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS BRIEF COMMUNICATIONS & REVIEW PAPERS, 2004, 43 (11A) :7634-7638
[9]   Reconfigurable photonic crystal circuits [J].
Grillet, Christian ;
Monat, Christelle ;
Smith, Cameron L. ;
Lee, Michael W. ;
Tomljenovic-Hanic, Snjezana ;
Karnutsch, Christian ;
Eggleton, Benjamin J. .
LASER & PHOTONICS REVIEWS, 2010, 4 (02) :192-204
[10]   Electrically tunable photonic bandgap guidance in a liquid-crystal-filled photonic crystal fiber [J].
Haakestad, MW ;
Alkeskjold, TT ;
Nielsen, MD ;
Scolari, L ;
Riishede, J ;
Engan, HE ;
Bjarklev, A .
IEEE PHOTONICS TECHNOLOGY LETTERS, 2005, 17 (04) :819-821