Front propagation and global bifurcations in a multivariable reaction-diffusion model

被引:1
作者
Knobloch, Edgar [1 ]
Yochelis, Arik [2 ,3 ]
机构
[1] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA
[2] Ben Gurion Univ Negev, Blaustein Inst Desert Res, Swiss Inst Dryland Environm & Energy Res, Sede Boqer Campus, IL-8499000 Ben Gurion, Israel
[3] Ben Gurion Univ Negev, Dept Phys, IL-8410501 Beer Sheva, Israel
基金
美国国家科学基金会;
关键词
BISTABILITY; EQUATION; CALCIUM; SNAKING; PULSES; WAVES;
D O I
10.1063/5.0147803
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the existence and stability of propagating fronts in Meinhardt's multivariable reaction-diffusion model of branching in one spatial dimension. We identify a saddle-node-infinite-period bifurcation of fronts that leads to episodic front propagation in the parameter region below propagation failure and show that this state is stable. Stable constant speed fronts exist only above this parameter value. We use numerical continuation to show that propagation failure is a consequence of the presence of a T-point corresponding to the formation of a heteroclinic cycle in a spatial dynamics description. Additional T-points are identified that are responsible for a large multiplicity of different unstable traveling front-peak states. The results indicate that multivariable models may support new types of behavior that are absent from typical two-variable models but may nevertheless be important in developmental processes such as branching and somitogenesis.
引用
收藏
页数:17
相关论文
共 36 条
  • [1] Nonlinear physics of electrical wave propagation in the heart: a review
    Alonso, Sergio
    Baer, Markus
    Echebarria, Blas
    [J]. REPORTS ON PROGRESS IN PHYSICS, 2016, 79 (09)
  • [2] Mathematical models for somite formation
    Baker, Ruth E.
    Schnell, Santiago
    Maini, Philip K.
    [J]. MULTISCALE MODELING OF DEVELOPMENTAL SYSTEMS, 2008, 81 : 183 - 203
  • [3] Fronts and waves of actin polymerization in a bistability-based mechanism of circular dorsal ruffles
    Bernitt, Erik
    Doebereiner, Hans-Guenther
    Gov, Nir S.
    Yochelis, Arik
    [J]. NATURE COMMUNICATIONS, 2017, 8
  • [4] Phase-Space Geometry of Mass-Conserving Reaction-Diffusion Dynamics
    Brauns, Fridtjof
    Halatek, Jacob
    Frey, Erwin
    [J]. PHYSICAL REVIEW X, 2020, 10 (04)
  • [5] Classification of Spatially Localized Oscillations in Periodically Forced Dissipative Systems
    Burke, J.
    Yochelis, A.
    Knobloch, E.
    [J]. SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2008, 7 (03) : 651 - 711
  • [6] Localized states in the generalized Swift-Hohenberg equation
    Burke, John
    Knobloch, Edgar
    [J]. PHYSICAL REVIEW E, 2006, 73 (05):
  • [7] When Shil'nikov meets Hopf in excitable systems
    Champneys, Alan R.
    Kirk, Vivien
    Knobloch, Edgar
    Oldeman, Bart E.
    Sneyd, James
    [J]. SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2007, 6 (04): : 663 - 693
  • [8] Bistability, wave pinning and localisation in natural reaction-diffusion systems?
    Champneys, Alan R.
    Al Saadi, Fahad
    Brena-Medina, Victor F.
    Grieneisen, Veronica A.
    Maree, Athanasius F. M.
    Verschueren, Nicolas
    Wuyts, Bert
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 2021, 416
  • [9] Cross M., 2009, PATTERN FORMATION DY
  • [10] PATTERN-FORMATION OUTSIDE OF EQUILIBRIUM
    CROSS, MC
    HOHENBERG, PC
    [J]. REVIEWS OF MODERN PHYSICS, 1993, 65 (03) : 851 - 1112