Prediction of state of health and remaining useful life of lithium-ion battery using graph convolutional network with dual attention mechanisms

被引:72
作者
Wei, Yupeng [1 ]
Wu, Dazhong [2 ]
机构
[1] San Jose State Univ, Dept Ind & Syst Engn, San Jose, CA 95192 USA
[2] Univ Cent Florida, Dept Mech & Aerosp Engn, Orlando, FL 32816 USA
基金
美国国家科学基金会;
关键词
Lithium-ion battery; State-of-health; Remaining useful life; Graph convolutional network; Dual attention mechanism; GAUSSIAN PROCESS REGRESSION;
D O I
10.1016/j.ress.2022.108947
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Prediction of state-of-health and remaining useful life is crucial to the safety of lithium-ion batteries. Existing state-of-health and remaining useful life prediction methods are not effective in revealing the correlation among features. Establishing the correlation can help identify features with high similarities and aggregate them to improve the accuracy of predictive models. Moreover, existing methods, such as recurrent neural networks and long short-term memory, have limitations in state-of-health and remaining useful life predictions as they are not capable of using the most relevant part of time-series data to make predictions. To address these issues, a two-stage optimization model is introduced to construct an undirected graph with optimal graph entropy. Based on the graph, the graph convolutional networks with different attention mechanisms are developed to predict the state-of-health and remaining useful life of a battery, where the attention mechanisms enable the neural network to use the most relevant part of time series data to make predictions. Experimental results have shown that the proposed method can accurately predict the state-of-health and remaining useful life with a minimum root-mean-squared-error of 0.0104 and 5.80, respectively. The proposed method also outperforms existing data-driven methods, such as gradient-boosting decision trees, long short-term memory, and Gaussian process.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] State of health and remaining useful life prediction of lithium-ion batteries with conditional graph convolutional network
    Wei, Yupeng
    Wu, Dazhong
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 238
  • [2] State of Health Monitoring and Remaining Useful Life Prediction of Lithium-Ion Batteries Based on Temporal Convolutional Network
    Zhou, Danhua
    Li, Zhanying
    Zhu, Jiali
    Zhang, Haichuan
    Hou, Lin
    IEEE ACCESS, 2020, 8 : 53307 - 53320
  • [3] Remaining Useful Life Prediction of a Lithium-Ion Battery Based on a Temporal Convolutional Network with Data Extension
    Zhao, Jing
    Liu, Dayong
    Meng, Lingshuai
    INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND COMPUTER SCIENCE, 2024, 34 (01) : 105 - 117
  • [4] State-of-health estimation and remaining useful life prediction for the lithium-ion battery based on a variant long short term memory neural network
    Li, Penghua
    Zhang, Zijian
    Xiong, Qingyu
    Ding, Baocang
    Hou, Jie
    Luo, Dechao
    Rong, Yujun
    Li, Shuaiyong
    JOURNAL OF POWER SOURCES, 2020, 459
  • [5] State of health estimation and remaining useful life prediction for lithium-ion batteries using FBELNN and RCMNN
    Lin, Qiongbin
    Xu, Zhifan
    Lin, Chih-Min
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2021, 40 (06) : 10919 - 10933
  • [6] Remaining Useful Life Prediction of Lithium-Ion Batteries: A Temporal and Differential Guided Dual Attention Neural Network
    Wang, Tianyu
    Ma, Zhongjing
    Zou, Suli
    IEEE TRANSACTIONS ON ENERGY CONVERSION, 2024, 39 (01) : 757 - 771
  • [7] Prediction of Remaining Useful Life of Lithium-ion Battery Based on UKF
    Huang, Mengtao
    Zhang, Qibo
    2020 CHINESE AUTOMATION CONGRESS (CAC 2020), 2020, : 4502 - 4506
  • [8] An enhanced deep learning framework for state of health and remaining useful life prediction of lithium-ion battery based on discharge fragments
    Wang, Shilong
    Wang, Peiben
    Wang, Lingfeng
    Li, Ke
    Xie, Haiming
    Jiang, Fachao
    JOURNAL OF ENERGY STORAGE, 2025, 107
  • [9] A naive Bayes model for robust remaining useful life prediction of lithium-ion battery
    Ng, Selina S. Y.
    Xing, Yinjiao
    Tsui, Kwok L.
    APPLIED ENERGY, 2014, 118 : 114 - 123
  • [10] Lithium-Ion Battery Remaining Useful Life Prediction Based on Hybrid Model
    Tang, Xuliang
    Wan, Heng
    Wang, Weiwen
    Gu, Mengxu
    Wang, Linfeng
    Gan, Linfeng
    SUSTAINABILITY, 2023, 15 (07)