Finite-strain elasticity theory and liquid-liquid phase separation in compressible gels

被引:3
作者
Little, Justin [1 ]
Levine, Alex J. [1 ,2 ,3 ]
Singh, Amit R. [4 ]
Bruinsma, Robijn [1 ,2 ]
机构
[1] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA
[2] Univ Calif Los Angeles, Dept Chem & Biochem, Los Angeles, CA 90095 USA
[3] Univ Calif Los Angeles, David Geffen Sch Med, Dept Computat Med, Los Angeles, CA 90095 USA
[4] Birla Inst Technol & Sci, Dept Mech Engn, Pilani 333031, Rajasthan, India
关键词
CAVITATION; SIZE;
D O I
10.1103/PhysRevE.107.024418
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The theory of finite-strain elasticity is applied to the phenomenon of cavitation observed in polymer gels following liquid-liquid phase separation of the solvent, which opens a fascinating window on the role of finite-strain elasticity theory in soft materials in general. We show that compressibility effects strongly enhance cavitation in simple materials that obey neo-Hookean elasticity. On the other hand, cavitation phenomena in gels of flexible polymers in a binary solvent that phase separates are surprisingly similar to those of incompressible materials. We find that, as a function of the interfacial energy between the two solvent components, there is a sharp transition between cavitation and classical nucleation and growth. Next, biopolymer gels are characterized by strain hardening and even very low levels of strain hardening turn out to suppress cavitation in polymer gels that obey Flory-Huggins theory in the absence of strain hardening. Our results indicate that cavitation is, in essence, not possible for polymer networks that show strain hardening.
引用
收藏
页数:14
相关论文
共 37 条
  • [21] Marsden JE., 1994, Mathematical Foundations of Elasticity
  • [22] Methods for Physical Characterization of Phase-Separated Bodies and Membrane-less Organelles
    Mitrea, Diana M.
    Chandra, Bappaditya
    Ferrolino, Mylene C.
    Gibbs, Eric B.
    Tolbert, Michele
    White, Michael R.
    Kriwacki, Richard W.
    [J]. JOURNAL OF MOLECULAR BIOLOGY, 2018, 430 (23) : 4773 - 4805
  • [23] Muller I., 2004, Rubber and Rubber Balloons: Paradigms of Thermodynamics, V637
  • [24] Ogden R.W., 1984, Non-linear Elastic Deformations
  • [25] Composition-dependent thermodynamics of intracellular phase separation
    Riback, Joshua A.
    Zhu, Lian
    Ferrolino, Mylene C.
    Tolbert, Michele
    Mitrea, Diana M.
    Sanders, David W.
    Wei, Ming-Tzo
    Kriwacki, Richard W.
    Brangwynne, Clifford P.
    [J]. NATURE, 2020, 581 (7807) : 209 - +
  • [26] Romera M. F.-C., 2018, BIOMIMETIC STRAIN ST
  • [27] Liquid demixing in elastic networks: Cavitation, permeation, or size selection?
    Ronceray, Pierre
    Mao, Sheng
    Kosmrlj, Andrej
    Haataja, Mikko P.
    [J]. EPL, 2022, 137 (06)
  • [28] Elastic stresses reverse Ostwald ripening
    Rosowski, Kathryn A.
    Vidal-Henriquez, Estefania
    Zwicker, David
    Style, Robert W.
    Dufresne, Eric R.
    [J]. SOFT MATTER, 2020, 16 (25) : 5892 - 5897
  • [29] Rubinstein M., 2003, Polymer Physics
  • [30] Scaling Laws for the Response of Nonlinear Elastic Media with Implications for Cell Mechanics
    Shokef, Yair
    Safran, Samuel A.
    [J]. PHYSICAL REVIEW LETTERS, 2012, 108 (17)