Finite-strain elasticity theory and liquid-liquid phase separation in compressible gels

被引:3
作者
Little, Justin [1 ]
Levine, Alex J. [1 ,2 ,3 ]
Singh, Amit R. [4 ]
Bruinsma, Robijn [1 ,2 ]
机构
[1] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA
[2] Univ Calif Los Angeles, Dept Chem & Biochem, Los Angeles, CA 90095 USA
[3] Univ Calif Los Angeles, David Geffen Sch Med, Dept Computat Med, Los Angeles, CA 90095 USA
[4] Birla Inst Technol & Sci, Dept Mech Engn, Pilani 333031, Rajasthan, India
关键词
CAVITATION; SIZE;
D O I
10.1103/PhysRevE.107.024418
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The theory of finite-strain elasticity is applied to the phenomenon of cavitation observed in polymer gels following liquid-liquid phase separation of the solvent, which opens a fascinating window on the role of finite-strain elasticity theory in soft materials in general. We show that compressibility effects strongly enhance cavitation in simple materials that obey neo-Hookean elasticity. On the other hand, cavitation phenomena in gels of flexible polymers in a binary solvent that phase separates are surprisingly similar to those of incompressible materials. We find that, as a function of the interfacial energy between the two solvent components, there is a sharp transition between cavitation and classical nucleation and growth. Next, biopolymer gels are characterized by strain hardening and even very low levels of strain hardening turn out to suppress cavitation in polymer gels that obey Flory-Huggins theory in the absence of strain hardening. Our results indicate that cavitation is, in essence, not possible for polymer networks that show strain hardening.
引用
收藏
页数:14
相关论文
共 37 条
  • [1] Cavitation in soft matter
    Barney, Christopher W.
    Dougan, Carey E.
    McLeod, Kelly R.
    Kazemi-Moridani, Amir
    Zheng, Yue
    Ye, Ziyu
    Tiwari, Sacchita
    Sacligil, Ipek
    Riggleman, Robert A.
    Cai, Shengqiang
    Lee, Jae-Hwang
    Peyton, Shelly R.
    Tew, Gregory N.
    Crosby, Alfred J.
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2020, 117 (17) : 9157 - 9165
  • [2] Bhattacharyya Abir, 2020, Biotribology, V22, DOI 10.1016/j.biotri.2020.100125
  • [3] Protein Phase Separation: A New Phase in Cell Biology
    Boeynaems, Steven
    Alberti, Simon
    Fawzi, Nicolas L.
    Mittag, Tanja
    Polymenidou, Magdalini
    Rousseau, Frederic
    Schymkowitz, Joost
    Shorter, James
    Wolozin, Benjamin
    Van den Bosch, Ludo
    Tompa, Peter
    Fuxreiter, Monika
    [J]. TRENDS IN CELL BIOLOGY, 2018, 28 (06) : 420 - 435
  • [4] Phase transitions and size scaling of membrane-less organelles
    Brangwynne, Clifford P.
    [J]. JOURNAL OF CELL BIOLOGY, 2013, 203 (06) : 875 - 881
  • [5] Chaikin P. M., 1995, Principles of Condensed Matter Physics
  • [6] de Gennes P.-G., 1979, SCALING CONCEPTS POL
  • [7] Doi M., 1996, Introduction to Polymer Physics
  • [8] Gel Dynamics
    Doi, Masao
    [J]. JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2009, 78 (05)
  • [9] Strain Stiffening in Synthetic and Biopolymer Networks
    Erk, Kendra A.
    Henderson, Kevin J.
    Shull, Kenneth R.
    [J]. BIOMACROMOLECULES, 2010, 11 (05) : 1358 - 1363
  • [10] FRACTURE-MECHANICS AND CAVITATION IN RUBBER-LIKE SOLIDS
    GENT, AN
    WANG, C
    [J]. JOURNAL OF MATERIALS SCIENCE, 1991, 26 (12) : 3392 - 3395