The purpose of this in vitro study was to compare the effect of staining, glazing, and polishing on the wear behavior of stabilized zirconia with 5 mol% of yttrium oxide (5Y-TZP) opposing 5Y-TZP, leucite-reinforced ceramic (LC), lithium disilicate (LD), and microhybrid composite resin (MCR). Hemispheres of 5Y-TZP were divided into six groups (n = 10) according to the finishing procedure: C (control), S (staining), G (glazing), P (polishings), SG (staining plus glazing), and SP (staining plus polishing). The two-body wear test (2BW) was performed (20 N load, at 2 Hz, until 300,000 cycles). Vertical height loss of hemispheres (VHL) and wear depth of restorative materials (WD) were analyzed using a profile projector and laser confocal microscope, respectively. Data of VHL and WD were analyzed using a generalized linear model by the Wald test and t post hoc test with the Bonferroni adjustment (alpha = 0.05). The staining, glazing, polishing, and restorative material had a significant effect (p < 0.05) on VHL and WD. Polishing reduced VHL opposing MCR, LC, and LD. There was an increase in WD to G opposing LD and SG opposing MCR. The 5Y-TZP presented the highest wear resistance, while MCR presented the lowest. Polishing was recommended to promote staining durability and decrease wear rates opposing MCR and LD.