Multiplicity of solutions for a p-Schrodinger-Kirchhoff-type integro-differential equation

被引:2
作者
Mayorga-Zambrano, Juan [1 ]
Murillo-Tobar, Josue [1 ,2 ]
Macancela-Bojorque, Abraham [1 ]
机构
[1] Yachay Tech Univ, Hda San Jose s-n & Proyecto Yachay, Urcuqui 100119, Ecuador
[2] Univ Paris Saclay, Univ Evry, 23 Blvd France, F-91037 Evry Courcouronnes, France
关键词
p-Schrodinger-Kirchhoff-type equation; Ljusternik-Schnirelman theory; Critical point theory; POSITIVE SOLUTIONS; EXISTENCE;
D O I
10.1007/s43034-023-00257-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the integro-differential problem (P):-(a+b(integral(RN)|del u|(p)dx)(p-1))Delta(u)(p)+V(x)|u|(p-2)u=f(x,u),x is an element of R-N,with|u(x)|--> 0, as|x|-->+infinity. We assume that a, b > 0,N >= 2, 1 < p < N <+infinity,V is an element of C(R-N)with inf(V)> 0, and thatf:R(N)xR--> Rverifies conditionsintroduced by Duan and Huang. We prove the existence of a non-trivial ground statesolution and, by a Ljusternik-Schnirelman scheme, the existence of infinitely manynon-trivial solutions.
引用
收藏
页数:19
相关论文
共 16 条
[1]   Positive solutions for a quasilinear elliptic equation of Kirchhoff type [J].
Alves, CO ;
Corrêa, FJSA ;
Ma, TF .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2005, 49 (01) :85-93
[2]  
Ambrosetti A, 2007, CAM ST AD M, V104, P1, DOI 10.1017/CBO9780511618260
[3]  
[Anonymous], 1995, Cambridge Studies in Advanced Mathematics
[4]  
Bogachev Vladimir Igorevich, 2007, Measure Theory, V1
[5]  
Brezis H, 2011, UNIVERSITEXT, P1
[6]  
Drummond P. D., 2014, QUANTUM THEORY NONLI
[7]   Infinitely Many Solutions for Sublinear Schrodinger-Kirchhoff-Type Equations With General Potentials [J].
Duan, Lian ;
Huang, Lihong .
RESULTS IN MATHEMATICS, 2014, 66 (1-2) :181-197
[8]   Analysis of a hybrid model for the electro-thermal behavior of semiconductor heterostructures [J].
Glitzky, Annegret ;
Liero, Matthias ;
Nika, Grigor .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2022, 507 (02)
[9]   An existence result for a class of electrothermal drift-diffusion models with Gauss-Fermi statistics for organic semiconductors [J].
Glitzky, Annegret ;
Liero, Matthias ;
Nika, Grigor .
ANALYSIS AND APPLICATIONS, 2021, 19 (02) :275-304
[10]   Infinitely many positive solutions for Kirchhoff-type problems [J].
He, Xiaoming ;
Zou, Wenming .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 70 (03) :1407-1414