Ground state and nodal solutions for fractional Orlicz problems with lack of regularity and without the Ambrosetti-Rabinowitz condition

被引:3
作者
Missaoui, Hlel [1 ]
Ounaies, Hichem [1 ]
机构
[1] Univ Monastir, Fac Sci, Math Dept, Monastir 5019, Tunisia
关键词
Ground state; Nodal solutions; Fractional Orlicz-Sobolev spaces; Nehari method; Generalized subdifferential; SIGN-CHANGING SOLUTIONS; ELLIPTIC-EQUATIONS; SOBOLEV SPACE; EXISTENCE; ENERGY;
D O I
10.1016/j.jmaa.2022.126833
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a non-local Shrodinger problem driven by the fractional Orlicz g-Laplace operator as follows (-Delta(g))(alpha)u + g(u) = K(x)f(x, u), in R-d, (P) where d >= 3, (-Delta(g))(alpha) is the fractional Orlicz g-Laplace operator, f : R-d x R -> R is a measurable function and K is a positive continuous function. Employing the Nehari manifold method and without assuming the well-known Ambrosetti-Rabinowitz and differentiability conditions on the non-linear term f, we prove that the problem (P) has a ground state of fixed sign and a nodal (or sign-changing) solutions. (c) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页数:33
相关论文
共 40 条
  • [1] Alberico A, 2022, Arxiv, DOI arXiv:2207.10597
  • [2] Fractional Orlicz-Sobolev embeddings
    Alberico, Angela
    Cianchi, Andrea
    Pick, Lubos
    Slavikova, Lenka
    [J]. JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2021, 149 : 216 - 253
  • [3] On fractional Orlicz-Sobolev spaces
    Alberico, Angela
    Cianchi, Andrea
    Pick, Lubos
    Slavikova, Lenka
    [J]. ANALYSIS AND MATHEMATICAL PHYSICS, 2021, 11 (02)
  • [4] On the limit as s → 1- of possibly non-separable fractional Orlicz-Sobolev spaces
    Alberico, Angela
    Cianchi, Andrea
    Pick, Lubos
    Slavikova, Lenka
    [J]. RENDICONTI LINCEI-MATEMATICA E APPLICAZIONI, 2020, 31 (04) : 879 - 899
  • [5] Alberico A, 2020, J FOURIER ANAL APPL, V26, DOI 10.1007/s00041-020-09785-z
  • [6] Sign-Changing Solutions for a Class of Zero Mass Nonlocal Schrodinger Equations
    Ambrosio, Vincenzo
    Figueiredo, Giovany M.
    Isernia, Teresa
    Bisci, Giovanni Molica
    [J]. ADVANCED NONLINEAR STUDIES, 2019, 19 (01) : 113 - 132
  • [7] Sign-changing solutions for a class of Schrodinger equations with vanishing potentials
    Ambrosio, Vincenzo
    Isernia, Teresa
    [J]. RENDICONTI LINCEI-MATEMATICA E APPLICAZIONI, 2018, 29 (01) : 127 - 152
  • [8] Bahrouni A, 2021, Arxiv, DOI [arXiv:2105.03368, 10.3233/ASY-221770]
  • [9] On a class of nonvariational problems in fractional Orlicz-Sobolev spaces
    Bahrouni, Anouar
    Bahrouni, Sabri
    Xiang, Mingqi
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2020, 190
  • [10] Neumann and Robin type boundary conditions in Fractional Orlicz-Sobolev spaces
    Bahrouni, Sabri
    Salort, Ariel M.
    [J]. ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2021, 27