Stabilizing Cobalt-free Li-rich Layered Oxide Cathodes through Oxygen Lattice Regulation by Two-phase Ru Doping

被引:76
作者
Fan, Yameng [1 ,2 ]
Olsson, Emilia [3 ,4 ]
Liang, Gemeng [5 ]
Wang, Zhijie [5 ]
D'Angelo, Anita M. [6 ]
Johannessen, Bernt [6 ]
Thomsen, Lars [6 ]
Cowie, Bruce [6 ]
Li, Jingxi [5 ]
Zhang, Fangli [1 ,5 ]
Zhao, Yunlong [7 ]
Pang, Wei Kong [1 ]
Cai, Qiong [2 ]
Guo, Zaiping [1 ,5 ]
机构
[1] Univ Wollongong, Inst Superconducting & Elect Mat, Fac Engn, Wollongong, NSW 2500, Australia
[2] Univ Surrey, Dept Chem & Proc Engn, Guildford GU2 7XH, England
[3] Adv Res Ctr Nanolithog, NL-1098 XG Amsterdam, Netherlands
[4] Univ Amsterdam, Inst Theoret Phys, NL-1098 XH Amsterdam, Netherlands
[5] Univ Adelaide, Sch Chem Engn & Adv Mat, Adelaide, SA 5005, Australia
[6] Australian Synchrotron, Australian Nucl Sci & Technol Org, Clayton, Vic 3168, Australia
[7] Univ Surrey, Adv Technol Inst, Guildford GU2 7XH, England
基金
荷兰研究理事会;
关键词
Lattice Oxygen; Li-Rich Cathodes; Lithium-Ion Batteries; Structural Evolution; Voltage Decay; PRACTICAL CHALLENGES; REDOX CHEMISTRY; ANIONIC REDOX; VOLTAGE DECAY; LI2MNO3;
D O I
10.1002/anie.202213806
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The application of Li-rich layered oxides is hindered by their dramatic capacity and voltage decay on cycling. This work comprehensively studies the mechanistic behaviour of cobalt-free Li1.2Ni0.2Mn0.6O2 and demonstrates the positive impact of two-phase Ru doping. A mechanistic transition from the monoclinic to the hexagonal behaviour is found for the structural evolution of Li1.2Ni0.2Mn0.6O2, and the improvement mechanism of Ru doping is understood using the combination of in operando and post-mortem synchrotron analyses. The two-phase Ru doping improves the structural reversibility in the first cycle and restrains structural degradation during cycling by stabilizing oxygen (O2-) redox and reducing Mn reduction, thus enabling high structural stability, an extraordinarily stable voltage (decay rate <0.45 mV per cycle), and a high capacity-retention rate during long-term cycling. The understanding of the structure-function relationship of Li1.2Ni0.2Mn0.6O2 sheds light on the selective doping strategy and rational materials design for better-performance Li-rich layered oxides.
引用
收藏
页数:9
相关论文
共 48 条
[1]   Lithium-Rich Cobalt-Free Manganese-Based Layered Cathode Materials for Li-Ion Batteries: Suppressing the Voltage Fading [J].
Abdel-Ghany, Ashraf ;
Hashem, Ahmed M. ;
Mauger, Alain ;
Julien, Christian M. .
ENERGIES, 2020, 13 (13)
[2]   Fundamental interplay between anionic/cationic redox governing the kinetics and thermodynamics of lithium-rich cathodes [J].
Assat, Gaurav ;
Foix, Dominique ;
Delacourt, Charles ;
Iadecola, Antonella ;
Dedryvere, Remi ;
Tarascon, Jean-Marie .
NATURE COMMUNICATIONS, 2017, 8
[3]   van der Waals Interactions in Layered Lithium Cobalt Oxides [J].
Aykol, Muratahan ;
Kim, Soo ;
Wolverton, C. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2015, 119 (33) :19053-19058
[4]   Urea-assisted mixed gas treatment on Li-Rich layered oxide with enhanced electrochemical performance [J].
Bao, Liying ;
Wei, Lei ;
Fu, Nuoting ;
Dong, Jinyang ;
Chen, Lai ;
Su, Yuefeng ;
Li, Ning ;
Lu, Yun ;
Li, Yongjian ;
Chen, Shi ;
Wu, Feng .
JOURNAL OF ENERGY CHEMISTRY, 2022, 66 :123-132
[5]   Ultrahigh-energy photons up to 1.4 petaelectronvolts from 12 γ-ray Galactic sources [J].
Cao, Zhen ;
Aharonian, F. A. ;
An, Q. ;
Axikegu ;
Bai, L. X. ;
Bai, Y. X. ;
Bao, Y. W. ;
Bastieri, D. ;
Bi, X. J. ;
Bi, Y. J. ;
Cai, H. ;
Cai, J. T. ;
Cao, Zhe ;
Chang, J. ;
Chang, J. F. ;
Chang, X. C. ;
Chen, B. M. ;
Chen, J. ;
Chen, L. ;
Chen, Liang ;
Chen, Long ;
Chen, M. J. ;
Chen, M. L. ;
Chen, Q. H. ;
Chen, S. H. ;
Chen, S. Z. ;
Chen, T. L. ;
Chen, X. L. ;
Chen, Y. ;
Cheng, N. ;
Cheng, Y. D. ;
Cui, S. W. ;
Cui, X. H. ;
Cui, Y. D. ;
Dai, B. Z. ;
Dai, H. L. ;
Dai, Z. G. ;
Danzengluobu ;
della Volpe, D. ;
Piazzoli, B. D' Ettorre ;
Dong, X. J. ;
Fan, J. H. ;
Fan, Y. Z. ;
Fan, Z. X. ;
Fang, J. ;
Fang, K. ;
Feng, C. F. ;
Feng, L. ;
Feng, S. H. ;
Feng, Y. L. .
NATURE, 2021, 594 (7861) :33-+
[6]   Preparation by a 'chimie douce' route and characterization of LiNizMn1-zO2(0.5<=z<=1) cathode materials [J].
Caurant, D ;
Baffier, N ;
Bianchi, V ;
Gregoire, G ;
Bach, S .
JOURNAL OF MATERIALS CHEMISTRY, 1996, 6 (07) :1149-1155
[7]   Exploring a Co-Free, Li-Rich Layered Oxide with Low Content of Nickel as a Positive Electrode for Li-Ion Battery [J].
Celeste, Arcangelo ;
Tuccillo, Mariarosaria ;
Santoni, Antonino ;
Reale, Priscilla ;
Brutti, Sergio ;
Silvestri, Laura .
ACS APPLIED ENERGY MATERIALS, 2021, 4 (10) :11290-11297
[8]   Chemical, Structural, and Electronic Aspects of Formation and Degradation Behavior on Different Length Scales of Ni-Rich NCM and Li-Rich HE-NCM Cathode Materials in Li-Ion Batteries [J].
de Biasi, Lea ;
Schwarz, Bjoern ;
Brezesinski, Torsten ;
Hartmann, Pascal ;
Janek, Juergen ;
Ehrenberg, Helmut .
ADVANCED MATERIALS, 2019, 31 (26)
[9]   Voltage decay and redox asymmetry mitigation by reversible cation migration in lithium-rich layered oxide electrodes [J].
Eum, Donggun ;
Kim, Byunghoon ;
Kim, Sung Joo ;
Park, Hyeokjun ;
Wu, Jinpeng ;
Cho, Sung-Pyo ;
Yoon, Gabin ;
Lee, Myeong Hwan ;
Jung, Sung-Kyun ;
Yang, Wanli ;
Seong, Won Mo ;
Ku, Kyojin ;
Tamwattana, Orapa ;
Park, Sung Kwan ;
Hwang, Insang ;
Kang, Kisuk .
NATURE MATERIALS, 2020, 19 (04) :419-+
[10]   Fundamental understanding and practical challenges of lithium-rich oxide cathode materials: Layered and disordered-rocksalt structure [J].
Fan, Yameng ;
Zhang, Wenchao ;
Zhao, Yunlong ;
Guo, Zaiping ;
Cai, Qiong .
ENERGY STORAGE MATERIALS, 2021, 40 :51-71