Deciding path size of nondeterministic (and input-driven) pushdown automata

被引:2
作者
Han, Yo-Sub [1 ]
Ko, Sang-Ki [2 ]
Salomaa, Kai [3 ]
机构
[1] Yonsei Univ, Dept Comp Sci, Seoul, South Korea
[2] Kangwon Natl Univ, Dept Comp Sci & Engn, Chunchon, South Korea
[3] Queens Univ, Sch Comp, Kingston, ON, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Measures of nondeterminism; Path size; Ambiguity; Input-driven pushdown automaton; Decidability; FINITE AUTOMATA; COMPLEXITY; AMBIGUITY;
D O I
10.1016/j.tcs.2022.10.023
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The degree of ambiguity (respectively, the path size) of a nondeterministic automaton, on a given input, measures the number of accepting computations (respectively, the number of all computations). It is known that deciding the finiteness of the degree of ambiguity of a nondeterministic pushdown automaton is undecidable. Also, it is undecidable for a given k >= 3 to decide whether the path size of a nondeterministic pushdown automaton is bounded by k.As the main result, we show that deciding the finiteness of the path size of a nondeterministic pushdown automaton can be done in polynomial time. Also, we show that the k -path problem for nondeterministic input-driven pushdown automata (respectively, for nondeterministic finite automata) is complete for exponential time (respectively, complete for polynomial space).(c) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页码:170 / 181
页数:12
相关论文
共 34 条
[1]  
Alur R., 2004, Proc. of the Thirty-sixth Annual ACM Symposium on Theory of Computing, P202, DOI DOI 10.1145/1007352.1007390
[2]   Adding Nesting Structure to Words [J].
Alur, Rajeev ;
Madhusudan, P. .
JOURNAL OF THE ACM, 2009, 56 (03)
[3]  
[Anonymous], 1979, Introduction to Automata Theory, Languages and Computation
[4]   The tractability frontier for NFA minimization [J].
Bjorklund, Henrik ;
Martens, Wim .
JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 2012, 78 (01) :198-210
[5]  
Caralp M, 2012, LECT NOTES COMPUT SC, V7410, P226, DOI 10.1007/978-3-642-31653-1_21
[6]  
Carotenuto D, 2007, LECT NOTES COMPUT SC, V4588, P132
[7]  
CHAN TH, 1983, THEOR COMPUT SCI, V23, P95, DOI 10.1016/0304-3975(88)90012-6
[8]   Problems on finite automata and the exponential time hypothesis [J].
Fernau H. ;
Krebs A. .
Algorithms, 2017, 10 (01)
[9]  
Gecseg F., 2015, ARXIV
[10]   Measuring nondeterminism in pushdown automata [J].
Goldstine, J ;
Leung, H ;
Wotschke, D .
JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 2005, 71 (04) :440-466