Rationalized deep learning super-resolution microscopy for sustained live imaging of rapid subcellular processes

被引:115
作者
Qiao, Chang [1 ,2 ]
Li, Di [3 ]
Liu, Yong [3 ]
Zhang, Siwei [3 ,4 ]
Liu, Kan [1 ]
Liu, Chong [3 ,4 ]
Guo, Yuting [3 ]
Jiang, Tao [3 ,4 ]
Fang, Chuyu [5 ]
Li, Nan [6 ]
Zeng, Yunmin [1 ]
He, Kangmin [6 ,7 ]
Zhu, Xueliang [5 ]
Lippincott-Schwartz, Jennifer [8 ]
Dai, Qionghai [1 ,2 ,9 ,10 ]
Li, Dong [3 ,4 ]
机构
[1] Tsinghua Univ, Dept Automat, Beijing, Peoples R China
[2] Tsinghua Univ, Inst Brain & Cognit Sci, Beijing, Peoples R China
[3] Chinese Acad Sci, CAS Ctr Excellence Biomacromol, Inst Biophys, Natl Lab Biomacromol, Beijing, Peoples R China
[4] Univ Chinese Acad Sci, Coll Life Sci, Beijing, Peoples R China
[5] Chinese Acad Sci, Univ Chinese Acad Sci, Ctr Excellence Mol Cell Sci, State Key Lab Cell Biol,Shanghai Inst Biochem & C, Shanghai, Peoples R China
[6] Chinese Acad Sci, Inst Genet & Dev Biol, State Key Lab Mol Dev Biol, Beijing, Peoples R China
[7] Univ Chinese Acad Sci, Coll Adv Agr Sci, Beijing, Peoples R China
[8] Howard Hughes Med Inst, Janelia Res Campus, Ashburn, VA 20147 USA
[9] Tsinghua Univ, Beijing Key Lab Multidimens & Multiscale Computat, Beijing, Peoples R China
[10] Beijing Municipal Educ Commiss, Beijing Lab Brain & Cognit Intelligence, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
CELL; RECONSTRUCTION; RESOLUTION; LYSOSOMES; ORGANELLE; ER;
D O I
10.1038/s41587-022-01471-3
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
The goal when imaging bioprocesses with optical microscopy is to acquire the most spatiotemporal information with the least invasiveness. Deep neural networks have substantially improved optical microscopy, including image super-resolution and restoration, but still have substantial potential for artifacts. In this study, we developed rationalized deep learning (rDL) for structured illumination microscopy and lattice light sheet microscopy (LLSM) by incorporating prior knowledge of illumination patterns and, thereby, rationally guiding the network to denoise raw images. Here we demonstrate that rDL structured illumination microscopy eliminates spectral bias-induced resolution degradation and reduces model uncertainty by five-fold, improving the super-resolution information by more than ten-fold over other computational approaches. Moreover, rDL applied to LLSM enables self-supervised training by using the spatial or temporal continuity of noisy data itself, yielding results similar to those of supervised methods. We demonstrate the utility of rDL by imaging the rapid kinetics of motile cilia, nucleolar protein condensation during light-sensitive mitosis and long-term interactions between membranous and membrane-less organelles.
引用
收藏
页码:367 / +
页数:35
相关论文
共 48 条
[1]   Whole-Cell Scale Dynamic Organization of Lysosomes Revealed by Spatial Statistical Analysis [J].
Ba, Qinle ;
Raghavan, Guruprasad ;
Kiselyov, Kirill ;
Yang, Ge .
CELL REPORTS, 2018, 23 (12) :3591-3606
[2]   Applications, promises, and pitfalls of deep learning for fluorescence image reconstruction [J].
Belthangady, Chinmay ;
Royer, Loic A. .
NATURE METHODS, 2019, 16 (12) :1215-1225
[3]   Lattice light-sheet microscopy: Imaging molecules to embryos at high spatiotemporal resolution [J].
Chen, Bi-Chang ;
Legant, Wesley R. ;
Wang, Kai ;
Shao, Lin ;
Milkie, Daniel E. ;
Davidson, Michael W. ;
Janetopoulos, Chris ;
Wu, Xufeng S. ;
Hammer, John A., III ;
Liu, Zhe ;
English, Brian P. ;
Mimori-Kiyosue, Yuko ;
Romero, Daniel P. ;
Ritter, Alex T. ;
Lippincott-Schwartz, Jennifer ;
Fritz-Laylin, Lillian ;
Mullins, R. Dyche ;
Mitchell, Diana M. ;
Bembenek, Joshua N. ;
Reymann, Anne-Cecile ;
Boehme, Ralph ;
Grill, Stephan W. ;
Wang, Jennifer T. ;
Seydoux, Geraldine ;
Tulu, U. Serdar ;
Kiehart, Daniel P. ;
Betzig, Eric .
SCIENCE, 2014, 346 (6208) :439-+
[4]   Dynamics of the IFT machinery at the ciliary tip [J].
Chien, Alexander ;
Shih, Sheng Min ;
Bower, Raquel ;
Tritschler, Douglas ;
Porter, Mary E. ;
Yildiz, Ahmet .
ELIFE, 2017, 6
[5]   LOWESS - A PROGRAM FOR SMOOTHING SCATTERPLOTS BY ROBUST LOCALLY WEIGHTED REGRESSION [J].
CLEVELAND, WS .
AMERICAN STATISTICIAN, 1981, 35 (01) :54-54
[6]   Image denoising by sparse 3-D transform-domain collaborative filtering [J].
Dabov, Kostadin ;
Foi, Alessandro ;
Katkovnik, Vladimir ;
Egiazarian, Karen .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2007, 16 (08) :2080-2095
[7]   Deep-Learning-Based Image Reconstruction and Enhancement in Optical Microscopy [J].
de Haan, Kevin ;
Rivenson, Yair ;
Wu, Yichen ;
Ozcan, Aydogan .
PROCEEDINGS OF THE IEEE, 2020, 108 (01) :30-50
[8]   Ependymal cell differentiation, from monociliated to multiciliated cells [J].
Delgehyr, Nathalie ;
Meunier, Alice ;
Faucourt, Marion ;
Grau, Montserrat Bosch ;
Strehl, Laetitia ;
Janke, Carsten ;
Spassky, Nathalie .
METHODS IN CILIA & FLAGELLA, 2015, 127 :19-35
[9]   Parameter-free image resolution estimation based on decorrelation analysis [J].
Descloux, A. ;
Grussmayer, K. S. ;
Radenovic, A. .
NATURE METHODS, 2019, 16 (09) :918-+
[10]   DNA-induced liquid phase condensation of cGAS activates innate immune signaling [J].
Du, Mingjian ;
Chen, Zhijian J. .
SCIENCE, 2018, 361 (6403) :704-+