Dual resolution deep learning network with self-attention mechanism for classification and localisation of colorectal cancer in histopathological images

被引:4
|
作者
Xu, Yan [1 ]
Jiang, Liwen [2 ]
Huang, Shuting [1 ]
Liu, Zhenyu [1 ]
Zhang, Jiangyu [2 ]
机构
[1] Guangdong Univ Technol, Sch Informat Engn, Guangzhou, Peoples R China
[2] Guangzhou Med Univ, Affiliated Canc Hosp & Inst, Dept Pathol, Guangzhou 510095, Peoples R China
关键词
colorectal cancer; image processing; computer-assisted; computer-aided design;
D O I
10.1136/jclinpath-2021-208042
中图分类号
R36 [病理学];
学科分类号
100104 ;
摘要
Aims Microscopic examination is a basic diagnostic technology for colorectal cancer (CRC), but it is very laborious. We developed a dual resolution deep learning network with self-attention mechanism (DRSANet) which combines context and details for CRC binary classification and localisation in whole slide images (WSIs), and as a computer-aided diagnosis (CAD) to improve the sensitivity and specificity of doctors' diagnosis. Methods Representative regions of interest (ROI) of each tissue type were manually delineated in WSIs by pathologists. Based on the same coordinates of centre position, patches were extracted at different magnification levels from the ROI. Specifically, patches from low magnification level contain contextual information, while from high magnification level provide important details. A dual-inputs network was designed to learn context and details simultaneously, and self-attention mechanism was used to selectively learn different positions in the images to enhance the performance. Results In classification task, DRSANet outperformed the benchmark networks which only depended on the high magnification patches on two test set. Furthermore, in localisation task, DRSANet demonstrated a better localisation capability of tumour area in WSI with less areas of misidentification. Conclusions We compared DRSANet with benchmark networks which only use the patches from high magnification level. Experimental results reveal that the performance of DRSANet is better than the benchmark networks. Both context and details should be considered in deep learning method.
引用
收藏
页码:524 / 530
页数:7
相关论文
共 50 条
  • [21] Research on a Capsule Network Text Classification Method with a Self-Attention Mechanism
    Yu, Xiaodong
    Luo, Shun-Nain
    Wu, Yujia
    Cai, Zhufei
    Kuan, Ta-Wen
    Tseng, Shih-Pang
    SYMMETRY-BASEL, 2024, 16 (05):
  • [22] Image Super-Resolution Reconstruction Based on Self-Attention Mechanism and Deep Generative Adversarial Network
    Zhao, Yu-Feng
    He, Jie
    Journal of Network Intelligence, 2024, 9 (04): : 1936 - 1950
  • [23] AEGANB3: An Efficient Framework with Self-attention Mechanism and Deep Convolutional Generative Adversarial Network for Breast Cancer Classification
    Huong Hoang Luong
    Hai Thanh Nguyen
    Thai-Nghe, Nguyen
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2024, 15 (05) : 1386 - 1398
  • [24] Magnetotelluric Data Inversion Based on Deep Learning With the Self-Attention Mechanism
    Xu, Kaijun
    Liang, Shuyuan
    Lu, Yan
    Hu, Zuzhi
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62
  • [25] Traffic Signal Control with Deep Reinforcement Learning and Self-attention Mechanism
    Zhang X.
    Nie S.
    Li Z.
    Zhang H.
    Jiaotong Yunshu Xitong Gongcheng Yu Xinxi/Journal of Transportation Systems Engineering and Information Technology, 2024, 24 (02): : 96 - 104
  • [26] Unsupervised Deep Learning Network with Self-Attention Mechanism for Non-Rigid Registration of 3D Brain MR Images
    Oh, Donggeon
    Kim, Bohyoung
    Lee, Jeongjin
    Shin, Yeong-Gil
    JOURNAL OF MEDICAL IMAGING AND HEALTH INFORMATICS, 2021, 11 (03) : 736 - 751
  • [27] Missing well logs prediction using deep learning integrated neural network with the self-attention mechanism
    Wang, Jun
    Cao, Junxing
    Fu, Jingcheng
    Xu, Hanqing
    ENERGY, 2022, 261
  • [28] A hybrid self-attention deep learning framework for multivariate sleep stage classification
    Yuan, Ye
    Jia, Kebin
    Ma, Fenglong
    Xun, Guangxu
    Wang, Yaqing
    Su, Lu
    Zhang, Aidong
    BMC BIOINFORMATICS, 2019, 20 (Suppl 16)
  • [29] Deep Learning on Histopathological Images for Colorectal Cancer Diagnosis: A Systematic Review
    Davri, Athena
    Birbas, Effrosyni
    Kanavos, Theofilos
    Ntritsos, Georgios
    Giannakeas, Nikolaos
    Tzallas, Alexandros T.
    Batistatou, Anna
    DIAGNOSTICS, 2022, 12 (04)
  • [30] A hybrid self-attention deep learning framework for multivariate sleep stage classification
    Ye Yuan
    Kebin Jia
    Fenglong Ma
    Guangxu Xun
    Yaqing Wang
    Lu Su
    Aidong Zhang
    BMC Bioinformatics, 20