Probabilistic Safety Guarantees for Markov Decision Processes

被引:2
作者
Wisniewski, Rafal [1 ]
Bujorianu, Manuela L. [2 ]
机构
[1] Aalborg Univ, Dept Elect Syst, Sect Automat & Control, DK-9220 Aalborg, Denmark
[2] UCL, Dept Comp Sci, London WC1E 6EA, England
基金
英国工程与自然科学研究理事会;
关键词
Dynamic programming (DP); linear programming (LP); Markov decision processes (MDPs); safety; STOCHASTIC SAFETY;
D O I
10.1109/TAC.2023.3291952
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This article aims to incorporate safety specifications into Markov decision processes. Explicitly, we address the minimization problem up to a stopping time with safety constraints. We establish a formalism leaning upon the evolution equation to achieve our goal. We show how to compute the safety function with dynamic programming. In the last part of this article, we develop several algorithms for safe stochastic optimization using linear and dynamic programming.
引用
收藏
页码:8095 / 8102
页数:8
相关论文
共 27 条
[1]  
Alshiekh M, 2018, AAAI CONF ARTIF INTE, P2669
[2]  
Altman Eitan., 1999, STOCH MODEL SER, P260
[3]  
Baier C, 2008, PRINCIPLES OF MODEL CHECKING, P1
[4]  
Bastani O, 2021, P AMER CONTR CONF, P3488, DOI 10.23919/ACC50511.2021.9483182
[5]  
Bertsekas D. P., 2018, Dynamic Programming and Optimal Control, V2
[6]  
Bertsekas DimitriP., 2017, DYNAMIC PROGRAMMING, V1
[7]  
Bharucha-Reid A. T., 1973, Probabilistic Methods in Applied Mathematics, V3
[8]   INVARIANT-MEASURES AND EVOLUTION-EQUATIONS FOR MARKOV-PROCESSES CHARACTERIZED VIA MARTINGALE PROBLEMS [J].
BHATT, AG ;
KARANDIKAR, RL .
ANNALS OF PROBABILITY, 1993, 21 (04) :2246-2268
[9]   Stochastic Safety for Markov Chains [J].
Bujorianu, Manuela L. ;
Wisniewski, Rafael ;
Boulougouris, Evangelos .
IEEE CONTROL SYSTEMS LETTERS, 2021, 5 (02) :427-432
[10]  
Bujorianu ML, 2019, IEEE DECIS CONTR P, P4433, DOI [10.1109/cdc40024.2019.9029377, 10.1109/CDC40024.2019.9029377]