Using evolutionary algorithms to design antennas with greater sensitivity to ultrahigh energy neutrinos

被引:0
作者
Rolla, J. [1 ,2 ,7 ]
Machtay, A. [1 ]
Patton, A. [1 ]
Banzhaf, W. [3 ]
Connolly, A. [1 ]
Debolt, R. [1 ]
Deer, L. [1 ]
Fahimi, E. [1 ]
Ferstle, E. [1 ]
Kuzma, P. [1 ]
Pfendner, C. [4 ]
Sipe, B. [1 ]
Staats, K. [5 ]
Wissel, S. A. [6 ]
机构
[1] Ohio State Univ, Dept Phys, Ctr Cosmol & AstroParticle Phys, Columbus, OH 43210 USA
[2] NASA, Jet Prop Lab, Pasadena, CA 91109 USA
[3] Michigan State Univ, Dept Comp Sci & Engn, E Lansing, MI 48824 USA
[4] Denison Univ, Dept Phys & Astron, Granville, OH 43023 USA
[5] Univ Arizona, Biosphere 2, South Biosphere Rd, Oracle, AZ 85623 USA
[6] Penn State Univ, Dept Astron & Astrophys, Dept Phys, State Coll, PA 16802 USA
[7] Jet Prop Lab, NASA, Pasadena, CA 91109 USA
基金
美国国家科学基金会;
关键词
GENETIC ALGORITHM; OPTIMIZATION; DETECTOR; HORN;
D O I
10.1103/PhysRevD.108.102002
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The Genetically Evolved NEutrino Telescopes for Improved Sensitivity project seeks to optimize detectors in physics for science outcomes in high-dimensional parameter spaces. In this project, we designed an antenna using a genetic algorithm with a science outcome directly as the sole figure of merit. This paper presents initial results on the improvement of an antenna design for in-ice neutrino detectors using the current Askaryan Radio Array (ARA) experiment as a baseline. By optimizing for the effective volume using the evolved antenna design in ARA, we improve upon ARA's simulated sensitivity to ultrahigh energy neutrinos by 11%, despite using limited parameters in this initial investigation. Future improvements will continue to increase the computational efficiency of the genetic algorithm and the complexity and fitness of the antenna designs. This work lays the foundation for continued research and development of methods to increase the sensitivity of detectors in physics and other fields in parameter spaces of high dimensionality.
引用
收藏
页数:17
相关论文
共 68 条
[51]   Optimization of the magnetic horn for the nuSTORM non-conventional neutrino beam using the genetic algorithm [J].
Liu, A. ;
Bross, A. ;
Neuffer, D. .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2015, 794 :200-205
[52]   Optimization of the design of Gas Cherenkov Detectors for ICF diagnosis [J].
Liu, Bin ;
Hu, Huasi ;
Han, Hetong ;
Lv, Huanwen ;
Li, Lan .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2018, 897 :54-58
[53]   Optimum design of helical antennas by genetic algorithm [J].
Lovestead, Raymond L. ;
Safaai-Jazi, Ahmad .
MICROWAVE AND OPTICAL TECHNOLOGY LETTERS, 2020, 62 (01) :425-431
[54]  
Luebbers R., 2006, 2006 IEEE Antennas and Propagation Society International Symposium (IEEE Cat. No. 06CH37758C), P119, DOI 10.1109/APS.2006.1710467
[55]   Genetic algorithms: Concepts and applications [J].
Man, KF ;
Tang, KS ;
Kwong, S .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 1996, 43 (05) :519-534
[56]   The optimisation, design and verification of feed horn structures for future Cosmic Microwave Background missions [J].
McCarthy, Darragh ;
Trappe, Neil ;
Murphy, J. Anthony ;
O'Sullivan, Creidhe ;
Gradziel, Marcin ;
Doherty, Stephen ;
Huggard, Peter G. ;
Polegro, Arturo ;
van der Vorst, Maarten .
INFRARED PHYSICS & TECHNOLOGY, 2016, 76 :32-37
[57]  
MOED MC, 1991, THIRD INTERNATIONAL CONFERENCE ON TOOLS FOR ARTIFICIAL INTELLIGENCE : TAI 91, P500, DOI 10.1109/TAI.1991.167032
[58]  
Nagel L. W., 1973, Technical Report UCB/ ERL M382
[59]  
Niknejad A. M., 2007, ELECTROMAGNETICS HIG
[60]  
Raghuwanshi M. M., 2004, P 8 ASIA PACIFIC S, V11