Electro-Responsive Breathing Transition of Conductive Hydrogel for Broadband Kinetic Energy Harvesting

被引:4
作者
Li, Zhou [1 ]
Yun, Huiru [1 ]
Yan, Yuke [1 ]
Yuan, Man [1 ]
Zhao, Yang [1 ]
Zhao, Fei [1 ]
机构
[1] Beijing Inst Technol, Key Lab Photoelect Electrophoton Convers Mat, Sch Chem & Chem Engn, Key Lab Cluster Sci,Minist Educ China, Beijing 100081, Peoples R China
基金
中国国家自然科学基金;
关键词
conductive polymer; electro-responsive material; energy harvesting; hydrogel; supercapacitors; ELECTROCHEMICAL CAPACITORS; SUPERCAPACITORS; CARBON; CHARGE;
D O I
10.1002/adma.202305837
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Reclaiming kinetic energy from vibrating machines holds great promise for sustainable energy harvesting technologies. Nevertheless, the impulsive current induced by vibrations is incompatible with conventional energy storage devices. The energy-management system necessitates novel designs of soft materials for lightweight, miniaturized, and integrated high-frequency electrochemical devices. Here, this work develops a conductive hydrogel with an electro-responsive polymeric network. The electro-responsive breathing transition of the crosslinking points facilitates the expeditious formation of a localized electrolyte layer. This layer features an exceedingly high local charge density, surpassing that of a saturated electrolyte solution by an order of magnitude, and thus enabling rapid charge transport under the influence of an applied voltage. The micro-capacitor based on the gel exhibits record-high capacitance of approximate to 2 mF cm-2 when the frequency of energy input reaches up to 104 Hz. This work also demonstrates a prototype battery charger that harvests energy from a running car engine. This study presents a feasible strategy for waste energy recycling using integrated electrochemical devices, opening a new avenue for ambient energy management. Conductive hydrogel, engineered with a PEDOT:PSS network featuring dynamic crosslinking points, exhibits electro-responsive behavior for efficient energy storage. The high-density charge surfaces enable breathing transitions under voltage, offering superior frequency compatibility. The flexible energy harvester based on such hydrogel reclaims kinetic energy, suggesting topological-structure engineering of hydrogels as a promising route for ambient energy management.image
引用
收藏
页数:8
相关论文
共 41 条
[1]   A Systematic Review of Piezoelectric Materials and Energy Harvesters for Industrial Applications [J].
Aabid, Abdul ;
Raheman, Md Abdul ;
Ibrahim, Yasser E. ;
Anjum, Asraar ;
Hrairi, Meftah ;
Parveez, Bisma ;
Parveen, Nagma ;
Zayan, Jalal Mohammed .
SENSORS, 2021, 21 (12)
[2]   Relaxor ferroelectric polymer exhibits ultrahigh electromechanical coupling at low electric field [J].
Chen, Xin ;
Qin, Hancheng ;
Qian, Xiaoshi ;
Zhu, Wenyi ;
Li, Bo ;
Zhang, Bing ;
Lu, Wenchang ;
Li, Ruipeng ;
Zhang, Shihai ;
Zhu, Lei ;
Dos Santos, Fabrice Domingues ;
Bernholc, J. ;
Zhang, Q. M. .
SCIENCE, 2022, 375 (6587) :1418-+
[3]   Highly heterogeneous epitaxy of flexoelectric BaTiO3-δ membrane on Ge [J].
Dai, Liyan ;
Zhao, Jinyan ;
Li, Jingrui ;
Chen, Bohan ;
Zhai, Shijie ;
Xue, Zhongying ;
Di, Zengfeng ;
Feng, Boyuan ;
Sun, Yanxiao ;
Luo, Yunyun ;
Ma, Ming ;
Zhang, Jie ;
Ding, Sunan ;
Zhao, Libo ;
Jiang, Zhuangde ;
Luo, Wenbo ;
Quan, Yi ;
Schwarzkopf, Jutta ;
Schroeder, Thomas ;
Ye, Zuo-Guang ;
Xie, Ya-Hong ;
Ren, Wei ;
Niu, Gang .
NATURE COMMUNICATIONS, 2022, 13 (01)
[4]   Piezoelectric Materials for Energy Harvesting and Sensing Applications: Roadmap for Future Smart Materials [J].
Das Mahapatra, Susmriti ;
Mohapatra, Preetam Chandan ;
Aria, Adrianus Indrat ;
Christie, Graham ;
Mishra, Yogendra Kumar ;
Hofmann, Stephan ;
Thakur, Vijay Kumar .
ADVANCED SCIENCE, 2021, 8 (17)
[5]   Significantly Enhanced Thermoelectric Properties of PEDOT:PSS Films through Sequential Post-Treatments with Common Acids and Bases [J].
Fan, Zeng ;
Li, Pengcheng ;
Du, Donghe ;
Ouyang, Jianyong .
ADVANCED ENERGY MATERIALS, 2017, 7 (08)
[6]   An Electrochemical Gelation Method for Patterning Conductive PEDOT:PSS Hydrogels [J].
Feig, Vivian Rachel ;
Tran, Helen ;
Lee, Minah ;
Liu, Kathy ;
Huang, Zhuojun ;
Beker, Levent ;
Mackanic, David G. ;
Bao, Zhenan .
ADVANCED MATERIALS, 2019, 31 (39)
[7]   Two-stage amplification of an ultrasensitive MXene-based intelligent artificial eardrum [J].
Gou, Guang-Yang ;
Li, Xiao-Shi ;
Jian, Jin-Ming ;
Tian, He ;
Wu, Fan ;
Ren, Jie ;
Geng, Xiang-Shun ;
Xu, Jian-Dong ;
Qiao, Yan-Cong ;
Yan, Zhao-Yi ;
Dun, Guanhua ;
Ahn, Chi Won ;
Yang, Yi ;
Ren, Tian-Ling .
SCIENCE ADVANCES, 2022, 8 (13)
[8]   MXene/Polymer Hybrid Materials for Flexible AC-Filtering Electrochemical Capacitors [J].
Gund, Girish Sambhaji ;
Park, Jeong Hee ;
Harpalsinh, Rana ;
Kota, Manikantan ;
Shin, Joo Hwan ;
Kim, Tae-il ;
Gogotsi, Yury ;
Park, Ho Seok .
JOULE, 2019, 3 (01) :164-176
[9]   Structurally integrated 3D carbon tube grid-based high-performance filter capacitor [J].
Han, Fangming ;
Qian, Ou ;
Meng, Guowen ;
Lin, Dou ;
Chen, Gan ;
Zhang, Shiping ;
Pan, Qijun ;
Zhang, Xiang ;
Zhu, Xiaoguang ;
Wei, Bingqing .
SCIENCE, 2022, 377 (6609) :1004-1007
[10]   Electrokinetic Analysis of Energy Harvest from Natural Salt Gradients in Nanochannels [J].
He, Yuhui ;
Huang, Zhuo ;
Chen, Bowei ;
Tsutsui, Makusu ;
Miao, Xiang Shui ;
Taniguchi, Masateru .
SCIENTIFIC REPORTS, 2017, 7