High-speed mapping of surface charge dynamics using sparse scanning Kelvin probe force microscopy

被引:11
|
作者
Checa, Marti [1 ]
Fuhr, Addis S. [1 ]
Sun, Changhyo [2 ]
Vasudevan, Rama [1 ]
Ziatdinov, Maxim [1 ,3 ]
Ivanov, Ilia [1 ]
Yun, Seok Joon [1 ,7 ]
Xiao, Kai [1 ]
Sehirlioglu, Alp [4 ]
Kim, Yunseok [2 ]
Sharma, Pankaj [5 ,6 ]
Kelley, Kyle P. [1 ]
Domingo, Neus [1 ]
Jesse, Stephen [1 ]
Collins, Liam [1 ]
机构
[1] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA
[2] Sungkyunkwan Univ, Sch Adv Mat Sci & Engn, Suwon 16419, South Korea
[3] Oak Ridge Natl Lab, Computat Sci & Engn Div, Oak Ridge, TN 37923 USA
[4] Case Western Reserve Univ, Dept Mat Sci & Engn, Cleveland, OH 44106 USA
[5] Flinders Univ S Australia, Coll Sci & Engn, Bedford Pk, SA 5042, Australia
[6] Univ New South Wales, ARC Ctr Excellence Future Low Energy Elect Technol, Sydney, NSW 2052, Australia
[7] Univ Ulsan, Dept Semicond Applicat, Ulsan 680749, South Korea
基金
新加坡国家研究基金会;
关键词
TOTAL-ENERGY CALCULATIONS; OXYGEN VACANCIES; TRANSPORT; SENSITIVITY; MOBILITY; STATE;
D O I
10.1038/s41467-023-42583-x
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Unraveling local dynamic charge processes is vital for progress in diverse fields, from microelectronics to energy storage. This relies on the ability to map charge carrier motion across multiple length- and timescales and understanding how these processes interact with the inherent material heterogeneities. Towards addressing this challenge, we introduce high-speed sparse scanning Kelvin probe force microscopy, which combines sparse scanning and image reconstruction. This approach is shown to enable sub-second imaging (>3 frames per second) of nanoscale charge dynamics, representing several orders of magnitude improvement over traditional Kelvin probe force microscopy imaging rates. Bridging this improved spatiotemporal resolution with macroscale device measurements, we successfully visualize electrochemically mediated diffusion of mobile surface ions on a LaAlO3/SrTiO3 planar device. Such processes are known to impact band-alignment and charge-transfer dynamics at these heterointerfaces. Furthermore, we monitor the diffusion of oxygen vacancies at the single grain level in polycrystalline TiO2. Through temperature-dependent measurements, we identify a charge diffusion activation energy of 0.18 eV, in good agreement with previously reported values and confirmed by DFT calculations. Together, these findings highlight the effectiveness and versatility of our method in understanding ionic charge carrier motion in microelectronics or nanoscale material systems.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Nanoscale photovoltage mapping in CZTSe/CuxSe heterostructure by using kelvin probe force microscopy
    Vishwakarma, Manoj
    Varandani, Deepak
    Hendrickx, Mylene
    Hadermann, Joke
    Mehta, B. R.
    MATERIALS RESEARCH EXPRESS, 2020, 7 (01)
  • [42] Characterization of corrosion interfaces by the scanning Kelvin probe force microscopy technique
    Guillaumin, V
    Schmutz, P
    Frankel, GS
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2001, 148 (05) : B163 - B173
  • [43] Surface Potential Mapping of SAM-Functionalized Organic Semiconductors by Kelvin Probe Force Microscopy
    Ellison, David J.
    Lee, Bumsu
    Podzorov, V.
    Frisbie, C. Daniel
    ADVANCED MATERIALS, 2011, 23 (04) : 502 - +
  • [44] Investigation of hydrogen evolution and enrichment by scanning Kelvin probe force microscopy
    Wang, Gang
    Yan, Yu
    Yang, Xina
    Li, Jinxu
    Qiao, Lijie
    ELECTROCHEMISTRY COMMUNICATIONS, 2013, 35 : 100 - 103
  • [45] The importance of cantilever dynamics in the interpretation of Kelvin probe force microscopy
    Satzinger, Kevin J.
    Brown, Keith A.
    Westervelt, Robert M.
    JOURNAL OF APPLIED PHYSICS, 2012, 112 (06)
  • [46] Structural Dynamics of Endocytosis by High-Speed Atomic Force Microscopy
    Tagiltsev, Grigory
    Eghiaian, Frederic
    Scheuring, Simon
    BIOPHYSICAL JOURNAL, 2017, 112 (03) : 92A - 92A
  • [47] Harnessing charge injection in Kelvin probe force microscopy for the evaluation of oxides
    Celano, U.
    Lee, Y.
    Serron, J.
    Smith, C.
    Franco, J.
    Ryu, K.
    Kim, M.
    Park, S.
    Lee, J.
    Kim, J.
    van der Heide, P.
    SOLID-STATE ELECTRONICS, 2021, 185
  • [48] Local charge trapping in Ge nanoclustersdetected by Kelvin probe force microscopy
    Kondratenko, S. V.
    Lysenko, V. S.
    Kozyrev, Yu. N.
    Kratzer, M.
    Storozhuk, D. P.
    Iliash, S. A.
    Czibula, C.
    Teichert, C.
    APPLIED SURFACE SCIENCE, 2016, 389 : 783 - 789
  • [49] Surface potential modeling and reconstruction in Kelvin probe force microscopy
    Xu, Jie
    Wu, Yangqing
    Li, Wei
    Xu, Jun
    NANOTECHNOLOGY, 2017, 28 (36)
  • [50] Measurement of Surface Potential and Adhesion with Kelvin Probe Force Microscopy
    Zhang, Hao
    Hussain, Danish
    Meng, Xianghe
    Song, Jianmin
    Xie, Hui
    2016 INTERNATIONAL CONFERENCE ON MANIPULATION, AUTOMATION AND ROBOTICS AT SMALL SCALES (MARSS), 2016,