Lévy Langevin Monte Carlo

被引:1
作者
Oechsler, David [1 ,2 ]
机构
[1] Tech Univ Dresden, Inst Math Stochast, Helmholtzstr 10, D-01069 Dresden, Germany
[2] Ctr Scalable Data Analyt & Artificial Intelligence, Helmholtzstr 10, Leipzig, Germany
关键词
Langevin Monte Carlo; Levy processes; Stochastic differential equations; Invariant distributions; Limiting distributions; MARKOVIAN PROCESSES; DRIVEN; ERGODICITY; STABILITY; EQUATIONS; CRITERIA; SDES;
D O I
10.1007/s11222-023-10345-w
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Analogously to the well-known Langevin Monte Carlo method, in this article we provide a method to sample from a target distribution pi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{\pi }$$\end{document} by simulating a solution of a stochastic differential equation. Hereby, the stochastic differential equation is driven by a general Levy process which-unlike the case of Langevin Monte Carlo-allows for non-smooth targets. Our method will be fully explored in the particular setting of target distributions supported on the half-line (0,infinity)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(0,\infty )$$\end{document} and a compound Poisson driving noise. Several illustrative examples conclude the article.
引用
收藏
页数:15
相关论文
共 25 条
[21]  
Schnurr A., 2009, The symbol of a Markov semimartingale
[22]  
Simsekli U, 2017, PR MACH LEARN RES, V70
[23]  
Welling Max, 2011, Proceedings of the 28th International Conference on Ma- chine Learning ICML-11, P681, DOI DOI 10.5555/3104482.3104568
[24]   Ergodicity of the Finite and Infinite Dimensional -Stable Systems [J].
Xu, Lihu ;
Zegarlinski, Boguslaw .
STOCHASTIC ANALYSIS AND APPLICATIONS, 2009, 27 (04) :797-824
[25]   Ergodicity of supercritical SDEs driven by α-stable processes and heavy-tailed sampling [J].
Zhang, Xiaolong ;
Zhang, Xicheng .
BERNOULLI, 2023, 29 (03) :1933-1958