Lévy Langevin Monte Carlo

被引:1
作者
Oechsler, David [1 ,2 ]
机构
[1] Tech Univ Dresden, Inst Math Stochast, Helmholtzstr 10, D-01069 Dresden, Germany
[2] Ctr Scalable Data Analyt & Artificial Intelligence, Helmholtzstr 10, Leipzig, Germany
关键词
Langevin Monte Carlo; Levy processes; Stochastic differential equations; Invariant distributions; Limiting distributions; MARKOVIAN PROCESSES; DRIVEN; ERGODICITY; STABILITY; EQUATIONS; CRITERIA; SDES;
D O I
10.1007/s11222-023-10345-w
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Analogously to the well-known Langevin Monte Carlo method, in this article we provide a method to sample from a target distribution pi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{\pi }$$\end{document} by simulating a solution of a stochastic differential equation. Hereby, the stochastic differential equation is driven by a general Levy process which-unlike the case of Langevin Monte Carlo-allows for non-smooth targets. Our method will be fully explored in the particular setting of target distributions supported on the half-line (0,infinity)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(0,\infty )$$\end{document} and a compound Poisson driving noise. Several illustrative examples conclude the article.
引用
收藏
页数:15
相关论文
共 25 条
[1]  
Bardenet R, 2017, J MACH LEARN RES, V18, P1
[2]  
Behme A., 2022, PREPRINT
[3]   Levy Matters III Levy-Type Processes: Construction, Approximation and Sample Path Properties Preface [J].
Barndorff-Nielsen, Ole E. ;
Bertoin, Jean ;
Jacod, Jean ;
Klueppelberg, Claudia .
LEVY MATTERS III: LEVY-TYPE PROCESSES: CONSTRUCTION, APPROXIMATION AND SAMPLE PATH PROPERTIES, 2013, 2099 :IX-+
[4]   Levy-driven Langevin systems: Targeted stochasticity [J].
Eliazar, I ;
Klafter, J .
JOURNAL OF STATISTICAL PHYSICS, 2003, 111 (3-4) :739-768
[5]  
Hale J K., 1980, Ordinary Differential Equations
[6]   Approximation of heavy-tailed distributions via stable-driven SDEs [J].
Huang, Lu-Jing ;
Majka, Mateusz B. ;
Wang, Jian .
BERNOULLI, 2021, 27 (03) :2040-2068
[7]  
Jacod J., 2013, LIMIT THEOREMS STOCH
[8]  
Kallenberg O., 1997, Foundations of Modern Probability, V2
[9]  
Kendall W, 2005, LECT NOTES SER INST, V7, P93
[10]   SOLUTIONS OF LEVY-DRIVEN SDES WITH UNBOUNDED COEFFICIENTS AS FELLER PROCESSES [J].
Kuehn, Franziska .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2018, 146 (08) :3591-3604