Cost-Aware Evaluation and Model Scaling for LiDAR-Based 3D Object Detection

被引:0
|
作者
Wang, Xiaofang [1 ]
Kitani, Kris M. [1 ]
机构
[1] Carnegie Mellon Univ, Inst Robot, Pittsburgh, PA 15213 USA
关键词
D O I
10.1109/ICRA48891.2023.10161165
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Considerable research effort has been devoted to LiDAR-based 3D object detection and empirical performance has been significantly improved. While progress has been encouraging, we observe an overlooked issue: it is not yet common practice to compare different 3D detectors under the same cost, e.g., inference latency. This makes it difficult to quantify the true performance gain brought by recently proposed architecture designs. The goal of this work is to conduct a cost-aware evaluation of LiDAR-based 3D object detectors. Specifically, we focus on SECOND, a simple grid-based one-stage detector, and analyze its performance under different costs by scaling its original architecture. Then we compare the family of scaled SECOND with recent 3D detection methods, such as Voxel RCNN and PV-RCNN++. The results are surprising. We find that, if allowed to use the same latency, SECOND can match the performance of PV-RCNN++, the current state-of-the-art method on the Waymo Open Dataset. Scaled SECOND also easily outperforms many recent 3D detection methods published during the past year. We recommend future research control the inference cost in their empirical comparison and include the family of scaled SECOND as a strong baseline when presenting novel 3D detection methods.
引用
收藏
页码:9260 / 9266
页数:7
相关论文
共 50 条
  • [21] Multi-modal information fusion for LiDAR-based 3D object detection framework
    Ma, Ruixin
    Yin, Yong
    Chen, Jing
    Chang, Rihao
    MULTIMEDIA TOOLS AND APPLICATIONS, 2024, 83 (03) : 7995 - 8012
  • [22] Stereo RGB and Deeper LIDAR-Based Network for 3D Object Detection in Autonomous Driving
    He, Qingdong
    Wang, Zhengning
    Zeng, Hao
    Zeng, Yi
    Liu, Yijun
    Liu, Shuaicheng
    Zeng, Bing
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2023, 24 (01) : 152 - 162
  • [23] ACDet: Attentive Cross-view Fusion for LiDAR-based 3D Object Detection
    Xu, Jiaolong
    Wang, Guojun
    Zhang, Xiao
    Wan, Guowei
    2022 INTERNATIONAL CONFERENCE ON 3D VISION, 3DV, 2022, : 74 - 83
  • [24] SARPNET: Shape attention regional proposal network for liDAR-based 3D object detection
    Ye, Yangyang
    Chen, Houjin
    Zhang, Chi
    Hao, Xiaoli
    Zhang, Zhaoxiang
    NEUROCOMPUTING, 2020, 379 : 53 - 63
  • [25] Multi-modal information fusion for LiDAR-based 3D object detection framework
    Ruixin Ma
    Yong Yin
    Jing Chen
    Rihao Chang
    Multimedia Tools and Applications, 2024, 83 : 7995 - 8012
  • [26] PLA-LiDAR: Physical Laser Attacks against LiDAR-based 3D Object Detection in Autonomous Vehicle
    Jin, Zizhi
    Ji, Xiaoyu
    Cheng, Yushi
    Yang, Bo
    Yan, Chen
    Xu, Wenyuan
    2023 IEEE SYMPOSIUM ON SECURITY AND PRIVACY, SP, 2023, : 1822 - 1839
  • [27] RTL3D: real-time LIDAR-based 3D object detection with sparse CNN
    Yan, Lin
    Liu, Kai
    Belyaev, Evgeny
    Duan, Meiyu
    IET COMPUTER VISION, 2020, 14 (05) : 224 - 232
  • [28] Diversity Knowledge Distillation for LiDAR-Based 3-D Object Detection
    Ning, Kanglin
    Liu, Yanfei
    Su, Yanzhao
    Jiang, Ke
    IEEE SENSORS JOURNAL, 2023, 23 (11) : 11181 - 11193
  • [29] CMDA: Cross-Modal and Domain Adversarial Adaptation for LiDAR-Based 3D Object Detection
    Chang, Gyusam
    Roh, Wonseok
    Jang, Sujin
    Lee, Dongwook
    Ji, Daehyun
    Oh, Gyeongrok
    Park, Jinsun
    Kim, Jinkyu
    Kim, Sangpil
    THIRTY-EIGHTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 38 NO 2, 2024, : 972 - 980
  • [30] Cross-Domain Generalization for LiDAR-Based 3D Object Detection in Infrastructure and Vehicle Environments
    Zhi, Peng
    Jiang, Longhao
    Yang, Xiao
    Wang, Xingzheng
    Li, Hung-Wei
    Zhou, Qingguo
    Li, Kuan-Ching
    Ivanovic, Mirjana
    SENSORS, 2025, 25 (03)