Cost-Aware Evaluation and Model Scaling for LiDAR-Based 3D Object Detection

被引:0
|
作者
Wang, Xiaofang [1 ]
Kitani, Kris M. [1 ]
机构
[1] Carnegie Mellon Univ, Inst Robot, Pittsburgh, PA 15213 USA
关键词
D O I
10.1109/ICRA48891.2023.10161165
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Considerable research effort has been devoted to LiDAR-based 3D object detection and empirical performance has been significantly improved. While progress has been encouraging, we observe an overlooked issue: it is not yet common practice to compare different 3D detectors under the same cost, e.g., inference latency. This makes it difficult to quantify the true performance gain brought by recently proposed architecture designs. The goal of this work is to conduct a cost-aware evaluation of LiDAR-based 3D object detectors. Specifically, we focus on SECOND, a simple grid-based one-stage detector, and analyze its performance under different costs by scaling its original architecture. Then we compare the family of scaled SECOND with recent 3D detection methods, such as Voxel RCNN and PV-RCNN++. The results are surprising. We find that, if allowed to use the same latency, SECOND can match the performance of PV-RCNN++, the current state-of-the-art method on the Waymo Open Dataset. Scaled SECOND also easily outperforms many recent 3D detection methods published during the past year. We recommend future research control the inference cost in their empirical comparison and include the family of scaled SECOND as a strong baseline when presenting novel 3D detection methods.
引用
收藏
页码:9260 / 9266
页数:7
相关论文
共 50 条
  • [1] LiDAR-Based Intensity-Aware Outdoor 3D Object Detection
    Naich, Ammar Yasir
    Carrion, Jesus Requena
    SENSORS, 2024, 24 (09)
  • [2] LiDAR-Based Symmetrical Guidance for 3D Object Detection
    Chu, Huazhen
    Ma, Huimin
    Liu, Haizhuang
    Wang, Rongquan
    PATTERN RECOGNITION AND COMPUTER VISION, PT IV, 2021, 13022 : 472 - 483
  • [3] LiDAR-based 3D Object Detection for Autonomous Driving
    Li, Zirui
    2022 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, COMPUTER VISION AND MACHINE LEARNING (ICICML), 2022, : 507 - 512
  • [4] LiDAR-Based 3D Temporal Object Detection via Motion-Aware LiDAR Feature Fusion
    Park, Gyuhee
    Koh, Junho
    Kim, Jisong
    Moon, Jun
    Choi, Jun Won
    SENSORS, 2024, 24 (14)
  • [5] Reinforcing LiDAR-Based 3D Object Detection with RGB and 3D Information
    Liu, Wenjian
    Zhou, Yue
    NEURAL INFORMATION PROCESSING (ICONIP 2019), PT II, 2019, 11954 : 199 - 209
  • [6] Out-of-Distribution Detection for LiDAR-based 3D Object Detection
    Huang, Chengjie
    Van Duong Nguyen
    Abdelzad, Vahdat
    Mannes, Christopher Gus
    Rowe, Luke
    Therien, Benjamin
    Salay, Rick
    Czarnecki, Krzysztof
    2022 IEEE 25TH INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS (ITSC), 2022, : 4265 - 4271
  • [7] RangeDet: In Defense of Range View for LiDAR-based 3D Object Detection
    Fan, Lue
    Xiong, Xuan
    Wang, Feng
    Wang, Naiyan
    Zhang, Zhaoxiang
    2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 2898 - 2907
  • [8] Revisiting Out-of-Distribution Detection in LiDAR-based 3D Object Detection
    Koesel, Michael
    Schreiber, Marcel
    Ulrich, Michael
    Glaeser, Claudius
    Dietmayer, Klaus
    2024 35TH IEEE INTELLIGENT VEHICLES SYMPOSIUM, IEEE IV 2024, 2024, : 2806 - 2813
  • [9] LiDAR-MIMO: Efficient Uncertainty Estimation for LiDAR-based 3D Object Detection
    Pitropov, Matthew
    Huang, Chengjie
    Abdelzad, Vahdat
    Czarnecki, Krzysztof
    Waslander, Steven
    2022 IEEE INTELLIGENT VEHICLES SYMPOSIUM (IV), 2022, : 813 - 820
  • [10] KPTr: Key point transformer for LiDAR-based 3D object detection
    Cao, Jie
    Peng, Yiqiang
    Wei, Hongqian
    Mo, Lingfan
    Fan, Likang
    Wang, Longfei
    MEASUREMENT, 2025, 242