Some approximation results on Chlodowsky type q-Bernstein-Schurer operators

被引:3
|
作者
Aslan, Resat [1 ]
Mursaleen, M. [2 ,3 ]
机构
[1] Harran Univ, Fac Sci & Arts, Dept Math, TR-63100 Haliliye, Sanliurfa, Turkiye
[2] China Med Univ Taiwan, China Med Univ Hosp, Dept Med Res, Taichung, Taiwan
[3] Aligarh Muslim Univ, Dept Math, Aligarh 202002, India
关键词
order of convergence; modulus of smoothness; Peetre's K-functional; Voronovskaya type asymptotic theorem; SZASZ-OPERATORS; VARIANT; SEQUENCE;
D O I
10.2298/FIL2323013A
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The main concern of this article is to obtain several approximation features of the new Chlodowsky type q-Bernstein-Schurer operators. We prove the Korovkin type approximation theorem and discuss the order of convergence with regard to the ordinary modulus of continuity, an element of Lipschitz type and Peetre's K-functional, respectively. In addition, we derive the Voronovskaya type asymptotic theorem. Finally, using of Maple software, we present the comparison of the convergence of Chlodowsky type q-Bernstein-Schurer operators to the certain functions with some graphical illustrations and error estimation tables.
引用
收藏
页码:8013 / 8028
页数:16
相关论文
共 50 条
  • [41] Approximation Properties of Bivariate Extension of q-Bernstein-Schurer-Kantorovich operators
    Acu, Ana Maria
    Muraru, Carmen Violeta
    RESULTS IN MATHEMATICS, 2015, 67 (3-4) : 265 - 279
  • [42] Approximation Properties of Bivariate Extension of q-Bernstein–Schurer–Kantorovich operators
    Ana Maria Acu
    Carmen Violeta Muraru
    Results in Mathematics, 2015, 67 : 265 - 279
  • [43] q-Bernstein-Schurer-Kantorovich Operators
    Ozarslan, Mehmet Ali
    Vedi, Tuba
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2013,
  • [44] Bivariate q-Bernstein-Chlodowsky-Durrmeyer type operators and the associated GBS operators
    Garg, Tarul
    Ispir, Nurhayat
    Agrawal, P. N.
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2020, 13 (05)
  • [45] q-Bernstein-Schurer-Kantorovich Operators
    Mehmet Ali Özarslan
    Tuba Vedi
    Journal of Inequalities and Applications, 2013
  • [46] Some new theorems on the approximation of maximum product type of multivariate nonlinear Bernstein-Chlodowsky operators
    Guller, Ozge Ozalp
    Acar, Ecem
    Serenbay, Sevilay Kirci
    ADVANCES IN OPERATOR THEORY, 2022, 7 (03)
  • [47] APPROXIMATION BY CHLODOWSKY TYPE q-JAKIMOVSKI-LEVIATAN OPERATORS
    Dalmanoglu, Ozge
    Serenbay, Sevilay Kirci
    COMMUNICATIONS FACULTY OF SCIENCES UNIVERSITY OF ANKARA-SERIES A1 MATHEMATICS AND STATISTICS, 2016, 65 (01): : 157 - 169
  • [48] APPROXIMATION PROPERTIES OF TWO-DIMENSIONAL q-BERNSTEIN-CHLODOWSKY-DURRMEYER OPERATORS
    Buyukyazici, Ibrahim
    Sharma, Honey
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2012, 33 (12) : 1351 - 1371
  • [49] Approximation by q-Baskakov-Schurer-Szasz Type Operators
    Yuksel, Ismet
    11TH INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2013, PTS 1 AND 2 (ICNAAM 2013), 2013, 1558 : 1136 - 1139
  • [50] ON CHLODOWSKY VARIANT OF (p, q) KANTOROVICH-STANCU-SCHURER OPERATORS
    Mishra, Vishnu Narayan
    Pandey, Shikha
    INTERNATIONAL JOURNAL OF ANALYSIS AND APPLICATIONS, 2016, 11 (01): : 28 - 39