Some approximation results on Chlodowsky type q-Bernstein-Schurer operators

被引:3
|
作者
Aslan, Resat [1 ]
Mursaleen, M. [2 ,3 ]
机构
[1] Harran Univ, Fac Sci & Arts, Dept Math, TR-63100 Haliliye, Sanliurfa, Turkiye
[2] China Med Univ Taiwan, China Med Univ Hosp, Dept Med Res, Taichung, Taiwan
[3] Aligarh Muslim Univ, Dept Math, Aligarh 202002, India
关键词
order of convergence; modulus of smoothness; Peetre's K-functional; Voronovskaya type asymptotic theorem; SZASZ-OPERATORS; VARIANT; SEQUENCE;
D O I
10.2298/FIL2323013A
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The main concern of this article is to obtain several approximation features of the new Chlodowsky type q-Bernstein-Schurer operators. We prove the Korovkin type approximation theorem and discuss the order of convergence with regard to the ordinary modulus of continuity, an element of Lipschitz type and Peetre's K-functional, respectively. In addition, we derive the Voronovskaya type asymptotic theorem. Finally, using of Maple software, we present the comparison of the convergence of Chlodowsky type q-Bernstein-Schurer operators to the certain functions with some graphical illustrations and error estimation tables.
引用
收藏
页码:8013 / 8028
页数:16
相关论文
共 50 条
  • [31] Modified (p,q)-Bernstein-Schurer operators and their approximation properties
    Mursaleen, M.
    Al-Abied, A.
    Nasiruzzaman, Md.
    COGENT MATHEMATICS, 2016, 3
  • [32] APPROXIMATION PROPERTIES OF THE GENERALIZED q-BERNSTEIN-SCHURER-KANTOROVICH OPERATORS
    Mursaleen, M.
    Khan, T.
    JOURNAL OF NONLINEAR FUNCTIONAL ANALYSIS, 2016,
  • [33] SOME APPROXIMATION RESULTS ON MODIFIED q-BERNSTEIN OPERATORS
    Aslan, Resat
    Izgi, Aydin
    JOURNAL OF MATHEMATICAL ANALYSIS, 2020, 11 (01): : 58 - 70
  • [34] Security of image transfer and innovative results for (p,q)-Bernstein-Schurer p,q )-Bernstein-Schurer operators
    Bilgin, Nazmiye Gonul
    Kaya, Yusuf
    Eren, Melis
    AIMS MATHEMATICS, 2024, 9 (09): : 23812 - 23836
  • [35] Some new theorems on the approximation of maximum product type of multivariate nonlinear Bernstein–Chlodowsky operators
    Özge Özalp Güller
    Ecem Acar
    Sevilay Kırcı Serenbay
    Advances in Operator Theory, 2022, 7
  • [36] Some approximation results for Stancu type Lupas-Schurer operators based on (p, q)-integers
    Kanat, K.
    Sofyalioglu, M.
    APPLIED MATHEMATICS AND COMPUTATION, 2018, 317 : 129 - 142
  • [37] Degree of approximation for bivariate extension of Chlodowsky-type q-Bernstein-Stancu-Kantorovich operators
    Baxhaku, Behar
    Agrawal, Purshottam Narain
    APPLIED MATHEMATICS AND COMPUTATION, 2017, 306 : 56 - 72
  • [38] APPROXIMATION BY α-BERNSTEIN-SCHURER- STANCU OPERATORS
    Cetin, Nursel
    Acu, Ana-Maria
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2021, 15 (02): : 845 - 860
  • [39] Chlodowsky-type q-Bernstein-Stancu-Kantorovich operators
    Vedi, Tuba
    Ozarslan, Mehmet Ali
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2015,
  • [40] Chlodowsky-type q-Bernstein-Stancu-Kantorovich operators
    Tuba Vedi
    Mehmet Ali Özarslan
    Journal of Inequalities and Applications, 2015