Some approximation results on Chlodowsky type q-Bernstein-Schurer operators

被引:3
|
作者
Aslan, Resat [1 ]
Mursaleen, M. [2 ,3 ]
机构
[1] Harran Univ, Fac Sci & Arts, Dept Math, TR-63100 Haliliye, Sanliurfa, Turkiye
[2] China Med Univ Taiwan, China Med Univ Hosp, Dept Med Res, Taichung, Taiwan
[3] Aligarh Muslim Univ, Dept Math, Aligarh 202002, India
关键词
order of convergence; modulus of smoothness; Peetre's K-functional; Voronovskaya type asymptotic theorem; SZASZ-OPERATORS; VARIANT; SEQUENCE;
D O I
10.2298/FIL2323013A
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The main concern of this article is to obtain several approximation features of the new Chlodowsky type q-Bernstein-Schurer operators. We prove the Korovkin type approximation theorem and discuss the order of convergence with regard to the ordinary modulus of continuity, an element of Lipschitz type and Peetre's K-functional, respectively. In addition, we derive the Voronovskaya type asymptotic theorem. Finally, using of Maple software, we present the comparison of the convergence of Chlodowsky type q-Bernstein-Schurer operators to the certain functions with some graphical illustrations and error estimation tables.
引用
收藏
页码:8013 / 8028
页数:16
相关论文
共 50 条
  • [21] Approximation by Fuzzy (p, q)-Bernstein-Chlodowsky Operators
    Ozkan, Esma Yildiz
    SAHAND COMMUNICATIONS IN MATHEMATICAL ANALYSIS, 2022, 19 (02): : 113 - 132
  • [22] Chlodowsky type (λ, q)-Bernstein-Stancu operators
    Mursaleen, M.
    Al-Abied, A. A. H.
    Salman, M. A.
    AZERBAIJAN JOURNAL OF MATHEMATICS, 2020, 10 (01): : 75 - 101
  • [23] King Type (p, q)-Bernstein Schurer Operators
    Bawa, Parveen
    Bhardwaj, Neha
    Bhatia, Sumit Kaur
    THAI JOURNAL OF MATHEMATICS, 2023, 21 (03): : 431 - 443
  • [24] q-Bernstein-Schurer-Kantorovich type operators
    Agrawal, P. N.
    Goyal, Meenu
    Kajla, Arun
    BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 2015, 8 (03): : 169 - 180
  • [25] Statistical approximation of modified Schurer-type q-Bernstein Kantorovich operators
    Qiu Lin
    Journal of Inequalities and Applications, 2014
  • [26] Some Approximation Results For (p, q)-Lupas-Schurer Operators
    Kanat, K.
    Sofyalioglu, M.
    FILOMAT, 2018, 32 (01) : 217 - 229
  • [27] Approximation properties of Kantorovich-type q-Bernstein-Stancu-Schurer operators
    Cai, Qing-Bo
    JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2017, 23 (05) : 847 - 859
  • [28] q-Bernstein-Schurer-Kantorovich type operators
    P. N. Agrawal
    Meenu Goyal
    Arun Kajla
    Bollettino dell'Unione Matematica Italiana, 2015, 8 (3) : 169 - 180
  • [29] Statistical approximation of modified Schurer-type q-Bernstein Kantorovich operators
    Lin, Qiu
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2014,
  • [30] Approximation by nonlinear Bernstein-Chlodowsky operators of Kantorovich type
    Acar, Ecem
    Guller, Ozge Ozalp
    Serenbay, Sevilay Kirci
    FILOMAT, 2023, 37 (14) : 4621 - 4627