Some approximation results on Chlodowsky type q-Bernstein-Schurer operators

被引:3
|
作者
Aslan, Resat [1 ]
Mursaleen, M. [2 ,3 ]
机构
[1] Harran Univ, Fac Sci & Arts, Dept Math, TR-63100 Haliliye, Sanliurfa, Turkiye
[2] China Med Univ Taiwan, China Med Univ Hosp, Dept Med Res, Taichung, Taiwan
[3] Aligarh Muslim Univ, Dept Math, Aligarh 202002, India
关键词
order of convergence; modulus of smoothness; Peetre's K-functional; Voronovskaya type asymptotic theorem; SZASZ-OPERATORS; VARIANT; SEQUENCE;
D O I
10.2298/FIL2323013A
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The main concern of this article is to obtain several approximation features of the new Chlodowsky type q-Bernstein-Schurer operators. We prove the Korovkin type approximation theorem and discuss the order of convergence with regard to the ordinary modulus of continuity, an element of Lipschitz type and Peetre's K-functional, respectively. In addition, we derive the Voronovskaya type asymptotic theorem. Finally, using of Maple software, we present the comparison of the convergence of Chlodowsky type q-Bernstein-Schurer operators to the certain functions with some graphical illustrations and error estimation tables.
引用
收藏
页码:8013 / 8028
页数:16
相关论文
共 50 条
  • [1] Generalized q-Bernstein-Schurer Operators and Some Approximation Theorems
    Mursaleen, M.
    Khan, Asif
    JOURNAL OF FUNCTION SPACES AND APPLICATIONS, 2013,
  • [2] Some approximation properties of a Durrmeyer variant of q-Bernstein-Schurer operators
    Acu, Ana-Maria
    Muraru, Carmen Violeta
    Sofonea, Daniel Florin
    Radu, Voichita Adriana
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2016, 39 (18) : 5636 - 5650
  • [3] King type modification of q-Bernstein-Schurer operators
    Mei-Ying Ren
    Xiao-Ming Zeng
    Czechoslovak Mathematical Journal, 2013, 63 : 805 - 817
  • [4] Approximation by complex q-Bernstein-Schurer operators in compact disks
    Ren, Mei-Ying
    Zeng, Xiao-Ming
    GEORGIAN MATHEMATICAL JOURNAL, 2013, 20 (02) : 377 - 395
  • [5] Note on q-Bernstein-Schurer operators
    Muraru, Carmen-Violeta
    STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2011, 56 (02): : 489 - 495
  • [6] King type modification of q-Bernstein-Schurer operators
    Ren, Mei-Ying
    Zeng, Xiao-Ming
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2013, 63 (03) : 805 - 817
  • [7] ON STATISTICAL APPROXIMATION PROPERTIES OF MODIFIED q-BERNSTEIN-SCHURER OPERATORS
    Ren, Mei-Ying
    Zeng, Xiao-Ming
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2013, 50 (04) : 1145 - 1156
  • [8] Convergence of modification of the Kantorovich-type q-Bernstein-Schurer operators
    Cai, Qing-Bo
    Zhou, Guorong
    JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2017, 22 (07) : 1261 - 1272
  • [9] ON APPROXIMATION TO DISCRETE Q-DERIVATIVES OF FUNCTIONS VIA Q-BERNSTEIN-SCHURER OPERATORS
    Karsli, Harun
    MATHEMATICAL FOUNDATIONS OF COMPUTING, 2021, 4 (01): : 15 - 30
  • [10] Approximation properties of Chlodowsky variant of (p, q) Bernstein-Stancu-Schurer operators
    Mishra, Vishnu Narayan
    Mursaleen, M.
    Pandey, Shikha
    Alotaibi, Abdullah
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2017,