Regularity of Lipschitz free boundaries for a p(x)-Laplacian problem with right hand side

被引:4
作者
Ferrari, Fausto [1 ]
Lederman, Claudia [2 ,3 ]
机构
[1] Univ Bologna, Dipartimento Matemat, Piazza Porta S Donato 5, I-40126 Bologna, Italy
[2] Univ Buenos Aires, Fac Ciencias Exactas & Nat, IMAS, CONICET, RA-1428 Buenos Aires, Argentina
[3] Univ Buenos Aires, Fac Ciencias Exactas & Nat, Dept Matemat, RA-1428 Buenos Aires, Argentina
来源
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES | 2023年 / 171卷
基金
欧盟地平线“2020”;
关键词
Free boundary regularity; Singular; degenerate operator; Non-zero right hand side; Viscosity solutions; Harnack inequality; Optimal regularity; FLAT FREE-BOUNDARIES; NONLINEAR ELLIPTIC-OPERATORS; 2-PHASE PROBLEMS; VISCOSITY SOLUTIONS; MINIMUM PROBLEM; C-1; C-ALPHA REGULARITY; VARIABLE EXPONENT; WEAK SOLUTIONS; EQUATIONS; 2ND-ORDER;
D O I
10.1016/j.matpur.2022.12.009
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We continue our study in [24] on viscosity solutions to a one-phase free boundary problem for the p(x)-Laplacian with non-zero right hand side. We first prove that viscosity solutions are locally Lipschitz continuous, which is the optimal regularity for the problem. Then we prove that Lipschitz free boundaries of viscosity solutions are C1, alpha. We also present some applications of our results. Moreover, we obtain new results for the operator under consideration that are of independent interest, such as a Harnack inequality.(c) 2022 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:26 / 74
页数:49
相关论文
共 56 条
[1]   New diffusion models in image processing [J].
Aboulaich, R. ;
Meskine, D. ;
Souissi, A. .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2008, 56 (04) :874-882
[2]  
ALT HW, 1981, J REINE ANGEW MATH, V325, P105
[3]  
Alt HW., 1984, Ann. Scuola Norm. Sup. Pisa Cl. Sci, V11, P1
[4]  
[Anonymous], 1995, AM MATH SOC C PUBLIC
[5]  
Antontsev S. N., 2006, Annali dell'Universita di Ferrara, Sezione VII Scienze Matematiche, V52, P19, DOI DOI 10.1007/S11565-006-0002-9
[6]  
Argiolas R, 2009, INTERFACE FREE BOUND, V11, P177
[7]  
Caffarelli L., 2005, A Geometric Approach to Free Boundary Problems
[8]  
Caffarelli L., 1987, REV MAT IBEROAM, V3, P139, DOI DOI 10.4171/RMI/47
[10]   Two-phase problems for linear elliptic operators with variable coefficients:: Lipschitz free boundaries are C1,γ [J].
Cerutti, MC ;
Ferrari, F ;
Salsa, S .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2004, 171 (03) :329-348