Time-dependent SOLPS-ITER simulations of the tokamak plasma boundary for model predictive control using SINDy

被引:13
作者
Lore, J. D. [1 ]
De Pascuale, S. [1 ]
Laiu, P. [1 ]
Russo, B. [1 ]
Park, J. -S. [1 ]
Park, J. M. [1 ]
Brunton, S. L. [2 ]
Kutz, J. N. [2 ]
Kaptanoglu, A. A. [2 ,3 ]
机构
[1] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA
[2] Univ Washington, Seattle, WA 98195 USA
[3] Univ Maryland, College Pk, MD 20742 USA
关键词
SOLPS-ITER; model based control; detachment; SPARSE IDENTIFICATION; DYNAMICS;
D O I
10.1088/1741-4326/acbe0e
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Time-dependent SOLPS-ITER simulations have been used to identify reduced models with the sparse identification of nonlinear dynamics (SINDy) method and develop model-predictive control of the boundary plasma state using main ion gas puff actuation. A series of gas actuation sequences are input into SOLPS-ITER to produce a dynamic response in upstream and divertor plasma quantities. The SINDy method is applied to identify reduced linear and nonlinear models for the electron density at the outboard midplane n(OMP) (e,sep ) and the electron temperature at the outer divertor T-e,sep(div) . Note that T-e,sep (div) is not necessarily the peak value of T-e along the divertor. The identified reduced models are interpretable by construction (i.e. not black box), and have the form of coupled ordinary differential equations. Despite significant noise in T-e,sep (div), the reduced models can be used to predict the response over a range of actuation levels to a maximum deviation of 0.5% in n(OMP) (e,sep ) and 5%-10% in T(e,sep )( )(div)for the cases considered. Model retraining using time history data triggered by a preset error threshold is also demonstrated. A model predictive control strategy for nonlinear models is developed and used to perform feedback control of a SOLPS-ITER simulation to produce a setpoint trajectory in n(OMP) (e,sep ) using the integrated plasma simulator framework. The developed techniques are general and can be applied to time-dependent data from other boundary simulations or experimental data. Ongoing work is extending the approach to model identification and control for divertor detachment, which will present transient nonlinear behavior from impurity seeding, including realistic latency and synthetic diagnostic signals derived from the full SOLPS-ITER output.
引用
收藏
页数:12
相关论文
共 65 条
[31]   Sparse nonlinear models of chaotic electroconvection [J].
Guan, Yifei ;
Brunton, Steven L. ;
Novosselov, Igor .
ROYAL SOCIETY OPEN SCIENCE, 2021, 8 (08)
[32]   Real-time control of divertor detachment in H-mode with impurity seeding using Langmuir probe feedback in JET-ITER-like wall [J].
Guillemaut, C. ;
Lennholm, M. ;
Harrison, J. ;
Carvalho, I. ;
Valcarcel, D. ;
Felton, R. ;
Griph, S. ;
Hogben, C. ;
Lucock, R. ;
Matthews, G. F. ;
Von Thun, C. Perez ;
Pitts, R. A. ;
Wiesen, S. ;
Abhangi, M. ;
Abreu, P. ;
Aftanas, M. ;
Afzal, M. ;
Aggarwal, K. M. ;
Aho-Mantila, L. ;
Ahonen, E. ;
Aints, M. ;
Airila, M. ;
Albanese, R. ;
Alegre, D. ;
Alessi, E. ;
Aleynikov, P. ;
Alfier, A. ;
Alkseev, A. ;
Allan, P. ;
Almaviva, S. ;
Alonso, A. ;
Alper, B. ;
Alsworth, I. ;
Alves, D. ;
Ambrosino, G. ;
Ambrosino, R. ;
Amosov, V. ;
Andersson, F. ;
Andersson Sunden, E. ;
Angelone, M. ;
Anghel, A. ;
Anghel, M. ;
Angioni, C. ;
Appel, L. ;
Apruzzese, G. ;
Arena, P. ;
Ariola, M. ;
Arnichand, H. ;
Arnoux, G. ;
Arshad, S. .
PLASMA PHYSICS AND CONTROLLED FUSION, 2017, 59 (04)
[33]   Sparse identification of nonlinear dynamics for model predictive control in the low-data limit [J].
Kaiser, E. ;
Kutz, J. N. ;
Brunton, S. L. .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2018, 474 (2219)
[34]  
Kaptanoglu A, 2022, J OPEN SOURCE SOFTW, V7, P3994, DOI [10.21105/joss.03994, 10.21105/joss.03994, DOI 10.21105/JOSS.03994]
[35]   Promoting global stability in data-driven models of quadratic nonlinear dynamics [J].
Kaptanoglu, Alan A. ;
Callaham, Jared L. ;
Aravkin, Aleksandr ;
Hansen, Christopher J. ;
Brunton, Steven L. .
PHYSICAL REVIEW FLUIDS, 2021, 6 (09)
[36]   Physics-constrained, low-dimensional models for magnetohydrodynamics: First-principles and data-driven approaches [J].
Kaptanoglu, Alan A. ;
Morgan, Kyle D. ;
Hansen, Chris J. ;
Brunton, Steven L. .
PHYSICAL REVIEW E, 2021, 104 (01)
[37]   Speed-up of SOLPS-ITER code for tokamak edge modeling [J].
Kaveeva, E. ;
Rozhansky, V. ;
Senichenkov, I. ;
Veselova, I. ;
Voskoboynikov, S. ;
Sytova, E. ;
Bonnin, X. ;
Coster, D. .
NUCLEAR FUSION, 2018, 58 (12)
[38]   LINEAR OPTIMAL-CONTROL OF TOKAMAK FUSION DEVICES [J].
KESSEL, CE ;
FIRESTONE, MA ;
CONN, RW .
FUSION TECHNOLOGY, 1990, 17 (03) :391-411
[39]   Systematic extraction of a control-oriented model from perturbative experiments and SOLPS-ITER for emission front control in TCV [J].
Koenders, J. T. W. ;
Wensing, M. ;
Ravensbergen, T. ;
Fevrier, O. ;
Perek, A. ;
van Berkel, M. .
NUCLEAR FUSION, 2022, 62 (06)
[40]   Plasma control systems relevant to ITER and fusion power plants [J].
Kurihara, K. ;
Lister, J. B. ;
Humphreys, D. A. ;
Ferron, J. R. ;
Treutterer, W. ;
Sartori, F. ;
Felton, R. ;
Bremond, S. ;
Moreau, P. .
FUSION ENGINEERING AND DESIGN, 2008, 83 (7-9) :959-970