Time-dependent SOLPS-ITER simulations of the tokamak plasma boundary for model predictive control using SINDy

被引:13
作者
Lore, J. D. [1 ]
De Pascuale, S. [1 ]
Laiu, P. [1 ]
Russo, B. [1 ]
Park, J. -S. [1 ]
Park, J. M. [1 ]
Brunton, S. L. [2 ]
Kutz, J. N. [2 ]
Kaptanoglu, A. A. [2 ,3 ]
机构
[1] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA
[2] Univ Washington, Seattle, WA 98195 USA
[3] Univ Maryland, College Pk, MD 20742 USA
关键词
SOLPS-ITER; model based control; detachment; SPARSE IDENTIFICATION; DYNAMICS;
D O I
10.1088/1741-4326/acbe0e
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Time-dependent SOLPS-ITER simulations have been used to identify reduced models with the sparse identification of nonlinear dynamics (SINDy) method and develop model-predictive control of the boundary plasma state using main ion gas puff actuation. A series of gas actuation sequences are input into SOLPS-ITER to produce a dynamic response in upstream and divertor plasma quantities. The SINDy method is applied to identify reduced linear and nonlinear models for the electron density at the outboard midplane n(OMP) (e,sep ) and the electron temperature at the outer divertor T-e,sep(div) . Note that T-e,sep (div) is not necessarily the peak value of T-e along the divertor. The identified reduced models are interpretable by construction (i.e. not black box), and have the form of coupled ordinary differential equations. Despite significant noise in T-e,sep (div), the reduced models can be used to predict the response over a range of actuation levels to a maximum deviation of 0.5% in n(OMP) (e,sep ) and 5%-10% in T(e,sep )( )(div)for the cases considered. Model retraining using time history data triggered by a preset error threshold is also demonstrated. A model predictive control strategy for nonlinear models is developed and used to perform feedback control of a SOLPS-ITER simulation to produce a setpoint trajectory in n(OMP) (e,sep ) using the integrated plasma simulator framework. The developed techniques are general and can be applied to time-dependent data from other boundary simulations or experimental data. Ongoing work is extending the approach to model identification and control for divertor detachment, which will present transient nonlinear behavior from impurity seeding, including realistic latency and synthetic diagnostic signals derived from the full SOLPS-ITER output.
引用
收藏
页数:12
相关论文
共 65 条
[1]  
Rosenfeld JA, 2021, Arxiv, DOI arXiv:1909.11792
[2]   Plasma current, shape, and position control in ITER [J].
Albanese, R ;
Ambrosino, G ;
Coccorese, E ;
Morabito, FC ;
Pironti, A ;
Rubinacci, G ;
Scala, S .
FUSION TECHNOLOGY, 1996, 30 (02) :167-183
[3]  
Ambrosino G, 1997, IEEE DECIS CONTR P, P3697, DOI 10.1109/CDC.1997.652431
[4]   Kernel learning for robust dynamic mode decomposition: linear and nonlinear disambiguation optimization [J].
Baddoo, Peter J. ;
Herrmann, Benjamin ;
McKeon, Beverley J. ;
Brunton, Steven L. .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2022, 478 (2260)
[5]   Sparse identification of multiphase turbulence closures for coupled fluid-particle flows [J].
Beetham, S. ;
Fox, R. O. ;
Capecelatro, J. .
JOURNAL OF FLUID MECHANICS, 2021, 914
[6]   Formulating turbulence closures using sparse regression with embedded form invariance [J].
Beetham, S. ;
Capecelatro, J. .
PHYSICAL REVIEW FLUIDS, 2020, 5 (08)
[7]   Power exhaust by SOL and pedestal radiation at ASDEX Upgrade and JET [J].
Bernert, M. ;
Wischmeier, M. ;
Huber, A. ;
Reimold, F. ;
Lipschultz, B. ;
Lowry, C. ;
Brezinsek, S. ;
Dux, R. ;
Eich, T. ;
Kallenbach, A. ;
Lebschy, A. ;
Maggi, C. ;
McDermott, R. ;
Puetterich, T. ;
Wiesen, S. .
NUCLEAR MATERIALS AND ENERGY, 2017, 12 :111-118
[8]   ITER divertor plasma response to time-dependent impurity injection [J].
Bonnin, X. ;
Pitts, R. A. ;
Komarov, V. ;
Escourbiac, F. ;
Merola, M. ;
Bo, L. ;
Wei, L. ;
Pan, L. ;
Kukushkin, A. S. .
NUCLEAR MATERIALS AND ENERGY, 2017, 12 :1100-1105
[9]   Presentation of the New SOLPS-ITER Code Package for Tokamak Plasma Edge Modelling [J].
Bonnin, Xavier ;
Dekeyser, Wouter ;
Pitts, Richard ;
Coster, David ;
Voskoboynikov, Serguey ;
Wiesen, Sven .
PLASMA AND FUSION RESEARCH, 2016, 11 :1-6
[10]   Sparse Identification of Nonlinear Dynamics with Control (SINDYc) [J].
Brunton, Steven L. ;
Proctor, Joshua L. ;
Kutz, J. Nathan .
IFAC PAPERSONLINE, 2016, 49 (18) :710-715