Ensemble-Based Data Assimilation of GPM DPR Reflectivity: Cloud Microphysics Parameter Estimation With the Nonhydrostatic Icosahedral Atmospheric Model (NICAM)

被引:2
作者
Kotsuki, Shunji [1 ,2 ,3 ,4 ,5 ]
Terasaki, Koji [1 ]
Satoh, Masaki [7 ,8 ]
Miyoshi, Takemasa [1 ,5 ,6 ,8 ]
机构
[1] RIKEN Ctr Computat Sci, Ctr Computat Sci, Kobe, Japan
[2] Chiba Univ, Ctr Environm Remote Sensing, Chiba, Japan
[3] Chiba Univ, Inst Adv Acad Res, Chiba, Japan
[4] Japan Sci & Technol Agcy, PRESTO, Chiba, Japan
[5] RIKEN Interdisciplinary Theoret & Math Sci Program, Interdisciplinary Theoret & Math Sci Program, Kobe, Japan
[6] RIKEN Cluster Pioneering Res, Kobe, Japan
[7] Univ Tokyo, Atmosphere & Ocean Res Inst, Tokyo, Japan
[8] Univ Maryland, Dept Atmospher & Ocean Sci, College Pk, MD USA
基金
日本学术振兴会;
关键词
data assimilation; GPM DPR; parameter estimation; cloud microphysics; radar reflectivity; MULTISATELLITE PRECIPITATION ANALYSIS; TRANSFORM KALMAN FILTER; RADAR REFLECTIVITY; GLOBAL PRECIPITATION; PART I; SIMULATIONS; PERFORMANCE; FRAMEWORK; OKLAHOMA; PERFECT;
D O I
10.1029/2022JD037447
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
Direct assimilation of Dual-frequency Precipitation Radar (DPR) data of the Global Precipitation Measurement (GPM) core satellite is challenging mainly due to its long revisiting intervals relative to the time scale of precipitation, and precipitation location errors. This study explores a method for improving precipitation forecasts using GPM DPR through model parameter estimation. We developed a 28 km mesh global atmospheric data assimilation system that integrates the Nonhydrostatic ICosahedral Atmospheric Model (NICAM) and Local Ensemble Transform Kalman Filter (LETKF) coupled with a satellite radar simulator. Using the NICAM-LETKF and GPM DPR observations, this study estimates a model cloud physics parameter corresponding to snowfall terminal velocity. To overcome the difficulties of long revisiting intervals and precipitation location errors, we propose a parameter estimation method based on a two-dimensional histogram known as the contoured frequency by temperature diagram (CFTD). Parameter estimation effectively mitigated the gap between simulated and observed CFTD, resulting in improved 6 hr precipitation forecasts.
引用
收藏
页数:19
相关论文
共 68 条
[41]   A joint satellite and global cloud-resolving model analysis of a Madden-Julian Oscillation event: Model diagnosis [J].
Masunaga, H. ;
Satoh, M. ;
Miura, H. .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2008, 113 (D17)
[42]   Local ensemble transform Kalman filtering with an AGCM at a T159/L48 resolution [J].
Miyoshi, Takemasa ;
Yamane, Shozo .
MONTHLY WEATHER REVIEW, 2007, 135 (11) :3841-3861
[43]   "Big Data Assimilation" Revolutionizing Severe Weather Prediction [J].
Miyoshi, Takemasa ;
Kunii, Masaru ;
Ruiz, Juan ;
Lien, Guo-Yuan ;
Satoh, Shinsuke ;
Ushio, Tomoo ;
Bessho, Kotaro ;
Seko, Hiromu ;
Tomita, Hirofumi ;
Ishikawa, Yutaka .
BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY, 2016, 97 (08) :1347-+
[44]   Ensemble Kalman Filter and 4D-Var Intercomparison with the Japanese Operational Global Analysis and Prediction System [J].
Miyoshi, Takemasa ;
Sato, Yoshiaki ;
Kadowaki, Takashi .
MONTHLY WEATHER REVIEW, 2010, 138 (07) :2846-2866
[45]  
Nasuno T, 2016, GEOSCI LETT, V3, DOI 10.1186/s40562-016-0064-1
[46]   Experimental Assimilation of the GPM Core Observatory DPR Reflectivity Profiles for Typhoon Halong (2014) [J].
Okamoto, Kozo ;
Aonashi, Kazumasa ;
Kubota, Takuji ;
Tashima, Tomoko .
MONTHLY WEATHER REVIEW, 2016, 144 (06) :2307-2326
[47]   Improvement of a Cloud Microphysics Scheme for a Global Nonhydrostatic Model Using TRMM and a Satellite Simulator [J].
Roh, Woosub ;
Satoh, Masaki ;
Nasuno, Tomoe .
JOURNAL OF THE ATMOSPHERIC SCIENCES, 2017, 74 (01) :167-184
[48]   Evaluation of Precipitating Hydrometeor Parameterizations in a Single-Moment Bulk Microphysics Scheme for Deep Convective Systems over the Tropical Central Pacific [J].
Roh, Woosub ;
Satoh, Masaki .
JOURNAL OF THE ATMOSPHERIC SCIENCES, 2014, 71 (07) :2654-2673
[49]   Combined State-Parameter Estimation with the LETKF for Convective-Scale Weather Forecasting [J].
Ruckstuhl, Y. ;
Janjic, T. .
MONTHLY WEATHER REVIEW, 2020, 148 (04) :1607-1628
[50]   The operational JMA nonhydrostatic mesoscale model [J].
Saito, K ;
Fujita, T ;
Yamada, Y ;
Ishida, JI ;
Kumagai, Y ;
Aranami, K ;
Ohmori, S ;
Nagasawa, R ;
Kumagai, S ;
Muroi, C ;
Kato, T ;
Eito, H ;
Yamazaki, Y .
MONTHLY WEATHER REVIEW, 2006, 134 (04) :1266-1298