Potential effects of future climate change on global reptile distributions and diversity

被引:18
|
作者
Biber, Matthias F. [1 ,3 ]
Voskamp, Alke [2 ]
Hof, Christian [1 ]
机构
[1] Tech Univ Munich, Sch Life Sci, Dept Life Sci Syst, Terr Ecol Res Grp, Freising Weihenstephan, Germany
[2] Senckenberg Biodivers & Climate Res Ctr SBiK F, Frankfurt, Germany
[3] Tech Univ Munich, Sch Life Sci, Dept Life Sci Syst, Terr Ecol Res Grp, Hans Carl von Carlowitz Pl 2, D-85354 Freising Weihenstephan, Germany
来源
GLOBAL ECOLOGY AND BIOGEOGRAPHY | 2023年 / 32卷 / 04期
关键词
bioclimate; biodiversity; environmental niche model; global warming; ISIMIP; lizard; snake; species distribution model; species richness; turtle; SPECIES DISTRIBUTION MODELS; LAND-USE; IMPACTS; VULNERABILITY; EVOLUTION; BEHAVIOR; HABITAT; THREATS; WORLDS;
D O I
10.1111/geb.13646
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
Aim:Until recently, complete information on global reptile distributions has not been widely available. Here, we provide the first comprehensive climate impact assessment for reptiles on a global scale. Location:Global, excluding Antarctica. Time period:1995, 2050 and 2080. Major taxa studied:Reptiles. Methods:We modelled the distribution of 6296 reptile species and assessed potential global and realm-specific changes in species richness, the change in global species richness across climate space, and species-specific changes in range extent, overlap and position under future climate change. To assess the future climatic impact on 3768 range-restricted species, which could not be modelled, we compared the future change in climatic conditions between both modelled and non-modelled species. Results:Reptile richness was projected to decline significantly over time, globally but also for most zoogeographical realms, with the greatest decreases in Brazil, Australia and South Africa. Species richness was highest in warm and moist regions, with these regions being projected to shift further towards climate extremes in the future. Range extents were projected to decline considerably in the future, with a low overlap between current and future ranges. Shifts in range centroids differed among realms and taxa, with a dominant global poleward shift. Non-modelled species were significantly stronger affected by projected climatic changes than modelled species. Main conclusions:With ongoing future climate change, reptile richness is likely to decrease significantly across most parts of the world. This effect, in addition to considerable impacts on species range extent, overlap and position, was visible across lizards, snakes and turtles alike. Together with other anthropogenic impacts, such as habitat loss and harvesting of species, this is a cause for concern. Given the historical lack of global reptile distributions, this calls for a re-assessment of global reptile conservation efforts, with a specific focus on anticipated future climate change.
引用
收藏
页码:519 / 534
页数:16
相关论文
共 50 条
  • [21] BIOLOGICAL DIVERSITY, ECOLOGY, AND GLOBAL CLIMATE CHANGE
    JUTRO, PR
    ENVIRONMENTAL HEALTH PERSPECTIVES, 1991, 96 : 167 - 170
  • [22] Global analysis of reptile elevational diversity
    McCain, Christy M.
    GLOBAL ECOLOGY AND BIOGEOGRAPHY, 2010, 19 (04): : 541 - 553
  • [23] Potential effects of climate change on elevational distributions of tropical birds in Southeast Asia
    Peh, Kelvin S. -H.
    CONDOR, 2007, 109 (02): : 437 - 441
  • [24] The potential effects of global climate change on microalgal photosynthesis, growth and ecology
    Beardall, J
    Raven, JA
    PHYCOLOGIA, 2004, 43 (01) : 26 - 40
  • [25] Global coccolithophore diversity: Drivers and future change
    O'Brien, Colleen J.
    Vogt, Meike
    Gruber, Nicolas
    PROGRESS IN OCEANOGRAPHY, 2016, 140 : 27 - 42
  • [26] Future Climate Change Will Reduce the Potential Distributions of Biocrusts: A Case Study on the Loess Plateau of China
    Liu, Ning
    Gao, Liqian
    Tian, Huihui
    Zhao, Yunge
    ECOSYSTEM HEALTH AND SUSTAINABILITY, 2024, 10
  • [27] Modelling current and future potential distributions of two desert jerboas under climate change in Iran
    Mohammadi, S.
    Ebrahimi, E.
    Moghadam, Shahriari M.
    Bosso, L.
    ECOLOGICAL INFORMATICS, 2019, 52 : 7 - 13
  • [28] Predicting the distributions of Egypt's medicinal plants and their potential shifts under future climate change
    Kaky, Emad
    Gilbert, Francis
    PLOS ONE, 2017, 12 (11):
  • [29] Evaluation of Shifts in the Potential Future Distributions of Carcharhinid Sharks Under Different Climate Change Scenarios
    Diaz-Carballido, Pedro Luis
    Mendoza-Gonzalez, Gabriela
    Yanez-Arenas, Carlos Alberto
    Chiappa-Carrara, Xavier
    FRONTIERS IN MARINE SCIENCE, 2022, 8
  • [30] Analysis of niche shift and potential suitable distributions of Dendrobium under the impact of global climate change
    Zuo, Jiajia
    Tang, Xinggang
    Zhang, Hanyue
    Zu, Mengting
    Zhang, Xihe
    Yuan, Yingdan
    ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2023, 30 (05) : 11978 - 11993