Potential Inhibitors of SARS-CoV-2 Main Protease (Mpro) Identified from the Library of FDA-Approved Drugs Using Molecular Docking Studies

被引:6
|
作者
Verma, Dipesh Kumar [1 ]
Kapoor, Srajan [1 ]
Das, Satyajeet [1 ]
Thakur, Krishan Gopal [1 ]
机构
[1] CSIR, Inst Microbial Technol, Struct Biol Lab, Chandigarh 160036, India
关键词
COVID-19; SARS-CoV-2; M-pro; molecular docking; MM-GBSA analysis; BINDING; PHARMACOKINETICS; OSPEMIFENE; EFFICACY; DESIGN; SAFETY; GLIDE;
D O I
10.3390/biomedicines11010085
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The Corona Virus Infectious Disease-2019 (COVID-19) outbreak originated at Wuhan, China, in December 2019. It has already spread rapidly and caused more than 6.5 million deaths worldwide. Its causal agent is a beta-coronavirus named SARS-CoV-2. Many efforts have already been made to develop new vaccines and drugs against these viruses, but over time, it has changed its molecular nature and evolved into more lethal variants, such as Delta and Omicron. These will lead us to target its more-conserved proteins. The sequences' BLAST and crystal structure of the main protease M-pro suggest a high sequence and structural conservation. M-pro is responsible for the proteolytic maturation of the polyprotein essential for the viral replication and transcription, which makes it an important drug target. Discovery of new drug molecules may take years before getting to the clinics. So, considering urgency, we performed molecular docking studies using FDA-approved drugs to identify molecules that could potentially bind to the substrate-binding site and inhibit SARS-CoV-2's main protease (M-pro). We used the Glide module in the Schrodinger software suite to perform molecular docking studies, followed by MM-GBSA-based energy calculations to score the hit molecules. Molecular docking and manual analysis suggest that several drugs may bind and potentially inhibit M-pro. We also performed molecular simulations studies for selected compounds to evaluate protein-drug interactions. Considering bioavailability, lesser toxicity, and route of administration, some of the top-ranked drugs, including lumefantrine (antimalarial), dipyridamole (coronary vasodilator), dihydroergotamine (used for treating migraine), hexoprenaline (anti asthmatic), riboflavin (vitamin B2), and pantethine (vitamin B5) may be taken forward for further in vitro and in vivo experiments to investigate their therapeutic potential.
引用
收藏
页数:15
相关论文
共 50 条
  • [41] Autochthonous Peruvian Natural Plants as Potential SARS-CoV-2 Mpro Main Protease Inhibitors
    Peralta-Moreno, Maria Nuria
    Anton-Munoz, Vanessa
    Ortega-Alarcon, David
    Jimenez-Alesanco, Ana
    Vega, Sonia
    Abian, Olga
    Velazquez-Campoy, Adrian
    Thomson, Timothy M.
    Granadino-Roldan, Jose Manuel
    Machicado, Claudia
    Rubio-Martinez, Jaime
    PHARMACEUTICALS, 2023, 16 (04)
  • [42] Repurposing Anthocyanins into Potential Inhibitors of the SARS-CoV-2 Main Protease (Mpro): an In Silico Approach
    Oyong, Glenn
    Cuevas, Joshua Godwin
    Gonzales, Bryant Kimm
    Nuniala, Louiejabe
    Singson, Rene Louis
    INTERNATIONAL CONFERENCE ON BIOMEDICAL ENGINEERING, ICOBE 2021, 2023, 2562
  • [43] Pharmacokinetics and Molecular Docking Studies of Uridine Derivatives as SARS-COV-2 Mpro Inhibitors
    Maowa, J.
    Hosen, M. A.
    Alam, A.
    Rana, K. M.
    Fujii, Y.
    Ozeki, Y.
    Kawsar, S. M. A.
    PHYSICAL CHEMISTRY RESEARCH, 2021, 9 (03): : 385 - 412
  • [44] Potential Exploration of Recent FDA-Approved Anticancer Drugs Against Models of SARS-CoV-2's Main Protease and Spike Glycoprotein: A Computational Study
    Parveen, Shazia
    Alnoman, Rua B.
    BIOINTERFACE RESEARCH IN APPLIED CHEMISTRY, 2021, 11 (03): : 10059 - 10073
  • [45] DFT, Molecular Docking, ADME, and Cardiotoxicity Studies of Persuasive Thiazoles as Potential Inhibitors of the Main Protease of SARS-CoV-2
    Khan, Muhammad Asim
    Mutahir, Sadaf
    Jabar, Gauhar
    Wenwei, Zhao
    Tariq, Muhammad Atif
    Almehizia, Abdulrahman A.
    Mustafa, Muhammad
    CHEMISTRY & BIODIVERSITY, 2024, 21 (12)
  • [46] Repurposing of US-FDA approved drugs against SARS-CoV-2 main protease (Mpro) by using STD-NMR spectroscopy, in silico studies and antiviral assays
    Khan, Abdul Mateen
    Atia-tul-Wahab
    Farooq, Saba
    Ullah, Asmat
    Choudhary, M. Iqbal
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2023, 234
  • [47] Aminoglycosides as potential inhibitors of SARS-CoV-2 main protease: an in silico drug repurposing study on FDA-approved antiviral and anti-infection agents
    Ahmed, Mohammad Z.
    Zia, Qamar
    Haque, Anzarul
    Alqahtani, Ali S.
    Almarfadi, Omar M.
    Banawas, Saeed
    Alqahtani, Mohammed S.
    Ameta, Keshav L.
    Haque, Shafiul
    JOURNAL OF INFECTION AND PUBLIC HEALTH, 2021, 14 (05) : 611 - 619
  • [48] Evaluation of Xa inhibitors as potential inhibitors of the SARS-CoV-2 Mpro protease
    Papaj, Katarzyna
    Spychalska, Patrycja
    Kapica, Patryk
    Fischer, Andre
    Nowak, Jakub
    Bzowka, Maria
    Sellner, Manuel
    Lill, Markus A.
    Smiesko, Martin
    Gora, Artur
    PLOS ONE, 2022, 17 (01):
  • [49] Comparative molecular investigation of the potential inhibitors against SARS-CoV-2 main protease: a molecular docking study
    Khan, Md Arif
    Mahmud, Shafi
    Ul Alam, A. S. M. Rubayet
    Rahman, Md Ekhtiar
    Ahmed, Firoz
    Rahmatullah, Mohammed
    JOURNAL OF BIOMOLECULAR STRUCTURE & DYNAMICS, 2021, 39 (16): : 6317 - 6323
  • [50] Screening of potential inhibitors targeting the main protease structure of SARS-CoV-2 via molecular docking
    Yang, Xinbo
    Xing, Xianrong
    Liu, Yirui
    Zheng, Yuanjie
    FRONTIERS IN PHARMACOLOGY, 2022, 13