Variational Approximation in Modular Spaces by Using Finite Element Method Approach

被引:0
作者
Mabdaoui, Mohamed [1 ]
Moussa, Hicham [2 ,4 ]
Rhoudaf, Mohamed [3 ]
机构
[1] Univ Chouaib Doukkali, Fac Polydisciplinaire Sidi Bennour, El Jadida, Morocco
[2] Univ Sultan Moulay Slimane, Fac Sci Tech Beni Mellal, Lab Math Appl & Calcul Sci, Beni Mellal, Morocco
[3] Univ Moulay Ismail Meknes, Fac Sci Meknes, Equipe EDPs & Calculs Sci, Beni Mellal, Morocco
[4] Sultan Moulay Slimane Univ, Beni Mellal 23000, Morocco
关键词
Finite element method; interpolation operators; nonlinear elliptic problem; Orlicz spaces; EQUATIONS;
D O I
10.1080/01630563.2022.2153367
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we shall study the polynomial approximation in a more general setting namely to consider the Orlicz-Sobolev spaces (WLM)-L-k(omega). We study the local and global interpolation estimate and we will show the finite element error estimate for a nonlinear elliptic problem where we establish a generalization of Cea's Theorem and we prove the modular convergence of the gradient, then we present the existence result and its proof.
引用
收藏
页码:64 / 85
页数:22
相关论文
共 15 条