Polynomiality of factorizations in reflection groups

被引:1
作者
Polak, Elzbieta [1 ,2 ]
Ross, Dustin [1 ,2 ]
机构
[1] Univ Texas Austin, Dept Math, Austin, TX 78712 USA
[2] San Francisco State Univ, Dept Math, San Francisco, CA 94132 USA
来源
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES | 2023年 / 75卷 / 01期
基金
美国国家科学基金会;
关键词
Reflection groups; factorizations; ELSV formula; polynomiality; PRODUCTS;
D O I
10.4153/S0008414X21000663
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the number of ways of factoring elements in the complex reflection groups G(r, s, n) as products of reflections. We prove a result that compares factorization numbers in G(r, s, n) to those in the symmetric group S-n, and we use this comparison, along with the Ekedahl, Lando, Shapiro, and Vainshtein (ELSV) formula, to deduce a polynomial structure for factorizations in G(r, s, n).
引用
收藏
页码:245 / 266
页数:22
相关论文
共 50 条
  • [41] Invariant theory for coincidental complex reflection groups
    Victor Reiner
    Anne V. Shepler
    Eric Sommers
    Mathematische Zeitschrift, 2021, 298 : 787 - 820
  • [42] Geometric Perspective on Piecewise Polynomiality of Double Hurwitz Numbers
    Cavalieri, Renzo
    Marcus, Steffen
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2014, 57 (04): : 749 - 764
  • [43] Embedding factorizations for 3-uniform hypergraphs II: r-factorizations into s-factorizations
    Bahmanian, Amin
    Newman, Mike
    ELECTRONIC JOURNAL OF COMBINATORICS, 2016, 23 (02)
  • [44] Factorizations of contractions
    Das, B. Krishna
    Sarkar, Jaydeb
    Sarkar, Srijan
    ADVANCES IN MATHEMATICS, 2017, 322 : 186 - 200
  • [45] Reflection groups and polytopes over finite fields, III
    Monson, B.
    Schulte, Egon
    ADVANCES IN APPLIED MATHEMATICS, 2008, 41 (01) : 76 - 94
  • [46] Hurwitz numbers for reflection groups III: Uniform formulae
    Douvropoulos, Theo
    Lewis, Joel Brewster
    Morales, Alejandro H.
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2025, 111 (03):
  • [47] Reflection groups and polytopes over finite fields, II
    Monson, B.
    Schulte, Egon
    ADVANCES IN APPLIED MATHEMATICS, 2007, 38 (03) : 327 - 356
  • [48] Invariant differential derivations for reflection groups in positive characteristic
    Hanson, D.
    Shepler, A. V.
    ADVANCES IN APPLIED MATHEMATICS, 2024, 156
  • [49] COMPARING CODIMENSION AND ABSOLUTE LENGTH IN COMPLEX REFLECTION GROUPS
    Foster-Greenwood, Briana
    COMMUNICATIONS IN ALGEBRA, 2014, 42 (10) : 4350 - 4365
  • [50] Reflection groups and polytopes over finite fields, I
    Monson, B
    Schulte, E
    ADVANCES IN APPLIED MATHEMATICS, 2004, 33 (02) : 290 - 317