Polynomiality of factorizations in reflection groups

被引:1
作者
Polak, Elzbieta [1 ,2 ]
Ross, Dustin [1 ,2 ]
机构
[1] Univ Texas Austin, Dept Math, Austin, TX 78712 USA
[2] San Francisco State Univ, Dept Math, San Francisco, CA 94132 USA
来源
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES | 2023年 / 75卷 / 01期
基金
美国国家科学基金会;
关键词
Reflection groups; factorizations; ELSV formula; polynomiality; PRODUCTS;
D O I
10.4153/S0008414X21000663
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the number of ways of factoring elements in the complex reflection groups G(r, s, n) as products of reflections. We prove a result that compares factorization numbers in G(r, s, n) to those in the symmetric group S-n, and we use this comparison, along with the Ekedahl, Lando, Shapiro, and Vainshtein (ELSV) formula, to deduce a polynomial structure for factorizations in G(r, s, n).
引用
收藏
页码:245 / 266
页数:22
相关论文
共 12 条
[1]   Transitive factorizations in the hyperoctahedral group [J].
Bini, G. ;
Goulden, I. P. ;
Jackson, D. M. .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2008, 60 (02) :297-312
[2]  
Cavalieri R., 2016, LONDON MATH SOC STUD
[3]   Counting factorizations of Coxeter elements into products of reflections [J].
Chapuy, Guillaume ;
Stump, Christian .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2014, 90 :919-939
[4]  
delMas E, 2018, ELECTRON J COMB, V25
[5]  
Douvropoulos T., 2020, SEM LOTHAR COMBIN, V82, P12
[6]   Hurwitz numbers and intersections on moduli spaces of curves [J].
Ekedahl, T ;
Lando, S ;
Shapiro, M ;
Vainshtein, A .
INVENTIONES MATHEMATICAE, 2001, 146 (02) :297-327
[7]  
Goulden I. P., 2000, Ann. Comb, V4, P27
[8]  
Hurwitz A., 1891, Mathematische Annalen, V39, P1, DOI DOI 10.1007/BF01199469
[10]   Factorization problems in complex reflection groups [J].
Lewis, Joel Brewster ;
Morales, Alejandro H. .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2021, 73 (04) :899-946