A probabilistic proof of the Perron-Frobenius theorem

被引:0
作者
Glynn, Peter W. [1 ]
Desai, Paritosh Y. [2 ]
机构
[1] Stanford Univ, Dept Management Sci & Engn, Stanford, CA 94305 USA
[2] Target Corp, Sunnyvale, CA USA
关键词
Markov population decision; Monte-Carlo algorithm; Perron-Frobenius theorem;
D O I
10.1002/nav.22042
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
The Perron-Frobenius theorem plays an important role in many areas of management science and operations research. This article provides a probabilistic perspective on the theorem, by discussing a proof that exploits a probabilistic representation of the Perron-Frobenius eigenvalue and eigenvectors in terms of the dynamics of a Markov chain. The proof recovers conditions in both the finite-dimensional and infinite-dimensional settings under which the Perron-Frobenius eigenvalue and eigenvectors have been shown to exist by other methods. In addition to providing new insights, the probabilistic representations that arise can be used to produce a Monte-Carlo algorithm for computing the Perron-Frobenius eigenvalue and eigenvectors that will be explored elsewhere.
引用
收藏
页码:443 / 453
页数:11
相关论文
共 18 条
[1]  
[Anonymous], 1950, An Introduction to Probability Theory and Its Applications
[2]  
[Anonymous], 1974, A Course in Probability Theory
[3]  
Billingsley P., 1995, PROBABILITY MEASURE
[4]  
Birkhoff G., 1957, Trans. Amer. Math. Soc., V85, P219
[5]  
Chung K. L., 1966, MARKOV CHAINS STATIO
[6]  
Gantmacher F. R., 1959, The Theory of Matrices
[7]  
Hoel P. G., 1972, INTRO STOCHASTIC PRO
[8]  
Krein M. G., 1948, Uspekhi Mat. Nauk, V3, P3
[9]  
Krein M. G., 1950, AM MATH SOC TRANSL, V1950, P128
[10]  
Meyn SP, 2009, Markov Chains and Stochastic Stability, V2nd, DOI DOI 10.1017/CBO9780511626630