An overview of hyperspectral image feature extraction, classification methods and the methods based on small samples

被引:28
|
作者
Li, Xueying [1 ,2 ]
Li, Zongmin [3 ]
Qiu, Huimin [1 ]
Hou, Guangli [1 ]
Fan, Pingping [1 ]
机构
[1] Qilu Univ Technol, Inst Oceanog Instrumentat, Shandong Acad Sci, Qingdao 266061, Peoples R China
[2] China Univ Petr East China, Sch Geosci, Qingdao, Peoples R China
[3] China Univ Petr East China, Coll Comp Sci & Technol, Qingdao, Peoples R China
基金
中国国家自然科学基金;
关键词
Hyperspectral image; small samples; feature extraction; classification methods; SPECTRAL-SPATIAL CLASSIFICATION; COLLABORATIVE REPRESENTATION; SPARSE REPRESENTATION; ATTRIBUTE PROFILES; FUSION; NETWORK; FRAMEWORK; SELECTION; CNN;
D O I
10.1080/05704928.2021.1999252
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
Hyperspectral image (HSI) contains rich spatial and spectral information, which has been widely used in resource exploration, ecological environment monitoring, land cover classification and target recognition. However, the nonlinearity of HSI data and the strong correlation between bands also bring difficulties and challenges to HSI application. In particular, the limited available hyperspectral training samples will lead to the classification accuracy cannot be improved. Therefore, making full use of the advantages of HSI data, through algorithms and strategies to solve the limited training samples, high-dimensional HSI data and effective classification method, so as to improve the classification accuracy. This paper reviews the research results of the feature extraction methods and classification methods of HSI classification in recent years. In addition, this paper expounds five kinds of small sample strategies, and solves the problem of small sample in HSI classification from different angles. Small sample strategy will be the focus of HSI classification research in the future. To solve the problem of small sample classification can greatly promote the application of HSI.
引用
收藏
页码:367 / 400
页数:34
相关论文
共 50 条
  • [41] Review of image low-level feature extraction methods for content-based image retrieval
    Wang, Shenlong
    Han, Kaixin
    Jin, Jiafeng
    SENSOR REVIEW, 2019, 39 (06) : 783 - 809
  • [42] Hyperspectral Image Classification with IFormer Network Feature Extraction
    Ren, Qi
    Tu, Bing
    Liao, Sha
    Chen, Siyuan
    REMOTE SENSING, 2022, 14 (19)
  • [43] Supervised Deep Feature Extraction for Hyperspectral Image Classification
    Liu, Bing
    Yu, Xuchu
    Zhang, Pengqiang
    Yu, Anzhu
    Fu, Qiongying
    Wei, Xiangpo
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2018, 56 (04): : 1909 - 1921
  • [44] Improved Feature Extraction Using Segmented FPCA for Hyperspectral Image Classification
    Uddin, M. P.
    Mamun, M. A.
    Hossain, M. A.
    2017 2ND INTERNATIONAL CONFERENCE ON ELECTRICAL & ELECTRONIC ENGINEERING (ICEEE), 2017,
  • [45] Multi-View Structural Feature Extraction for Hyperspectral Image Classification
    Liang, Nannan
    Duan, Puhong
    Xu, Haifeng
    Cui, Lin
    REMOTE SENSING, 2022, 14 (09)
  • [46] Applying Reject Region to Adaptive Feature Extraction for Hyperspectral Image Classification
    Lin, Shih-Syun
    Huang, Chih-Sheng
    Chu, Hui-Shan
    Kuo, Bor-Chen
    ICIEA 2010: PROCEEDINGS OF THE 5TH IEEE CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS, VOL 4, 2010, : 595 - 600
  • [47] Double Nearest Proportion Feature Extraction for Hyperspectral-Image Classification
    Huang, Hsiao-Yun
    Kuo, Bor-Chen
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2010, 48 (11): : 4034 - 4046
  • [48] Fast Sequential Feature Extraction for Recurrent Neural Network-Based Hyperspectral Image Classification
    Ma, Andong
    Filippi, Anthony M.
    Wang, Zhangyang
    Yin, Zhengcong
    Huo, Da
    Li, Xiao
    Guneralp, Burak
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2021, 59 (07): : 5920 - 5937
  • [49] Ensemble EMD-Based Spectral-Spatial Feature Extraction for Hyperspectral Image Classification
    Li, Qianming
    Zheng, Bohong
    Tu, Bing
    Wang, Jinping
    Zhou, Chengle
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2020, 13 : 5134 - 5148
  • [50] Collaborative representation analysis methods for feature extraction
    Hua, Juliang
    Wang, Huan
    Ren, Mingu
    Huang, Heyan
    NEURAL COMPUTING & APPLICATIONS, 2017, 28 : S225 - S231