Hyperspectral image dynamic range reconstruction using deep neural network-based denoising methods

被引:0
|
作者
Cheplanov, Loran [1 ,2 ]
Avidan, Shai [1 ]
Bonfil, David J. [3 ]
Klapp, Iftach [2 ]
机构
[1] Tel Aviv Univ, Sch Elect Engn, IL-69978 Tel Aviv, Israel
[2] Agr Res Org, Volcani Inst, Dept Sensing Informat & Mechanizat Engn, IL-7505101 Rishon Leziyyon, Israel
[3] Agr Res Org, Dept Vegetables & Field Crops, Gilat Res Ctr, IL-8531100 Negev, Israel
关键词
Deep neural network; Dynamic-range reconstruction; Shortening shooting time; Hyperspectral; Image denoising; Kullback-Leibler divergence loss;
D O I
10.1007/s00138-024-01523-5
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Hyperspectral (HS) measurement is among the most useful tools in agriculture for early disease detection. However, the cost of HS cameras that can perform the desired detection tasks is prohibitive-typically fifty thousand to hundreds of thousands of dollars. In a previous study at the Agricultural Research Organization's Volcani Institute (Israel), a low-cost, high-performing HS system was developed which included a point spectrometer and optical components. Its main disadvantage was long shooting time for each image. Shooting time strongly depends on the predetermined integration time of the point spectrometer. While essential for performing monitoring tasks in a reasonable time, shortening integration time from a typical value in the range of 200 ms to the 10 ms range results in deterioration of the dynamic range of the captured scene. In this work, we suggest correcting this by learning the transformation from data measured with short integration time to that measured with long integration time. Reduction of the dynamic range and consequent low SNR were successfully overcome using three developed deep neural networks models based on a denoising auto-encoder, DnCNN and LambdaNetworks architectures as a backbone. The best model was based on DnCNN using a combined loss function of l2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell _{2}$$\end{document} and Kullback-Leibler divergence on images with 20 consecutive channels. The full spectrum of the model achieved a mean PSNR of 30.61 and mean SSIM of 0.9, showing total improvement relatively to the 10 ms measurements' mean PSNR and mean SSIM values by 60.43% and 94.51%, respectively.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Infrared image denoising based on convolutional neural network
    Sun, Cheng
    Pan, Mingqiang
    Zhou, Bin
    Zhu, Zongjian
    2018 13TH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION (WCICA), 2018, : 499 - 502
  • [32] Radiation Image Denoising Based on Convolutional Neural Network
    Sun Y.-W.
    Liu H.
    Cong P.
    Li L.-T.
    Xiang X.-C.
    Guo X.-J.
    Yuanzineng Kexue Jishu, 9 (1678-1682): : 1678 - 1682
  • [33] Building a smart dynamic kernel with compact support based on deep neural network for efficient X-ray image denoising
    Mbarki, Zouhair
    Ben Slama, Amine
    Seddik, Hassene
    Trabelsi, Hedi
    COMPUTER METHODS IN BIOMECHANICS AND BIOMEDICAL ENGINEERING-IMAGING AND VISUALIZATION, 2022, 10 (02) : 132 - 144
  • [34] HYPERSPECTRAL IMAGE DENOISING BASED ON PARALLEL CROSS-FUSION NETWORK
    Gong, Zhuoran
    Gao, Feng
    Dong, Junyu
    Qi, Lin
    2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 1528 - 1531
  • [35] 3-D Quasi-Recurrent Neural Network for Hyperspectral Image Denoising
    Wei, Kaixuan
    Fu, Ying
    Huang, Hua
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2021, 32 (01) : 363 - 375
  • [36] Self-Supervised Denoising Image Filter Based on Recursive Deep Neural Network Structure
    Kang, Changhee
    Kang, Sang-ug
    SENSORS, 2021, 21 (23)
  • [37] Deep demosaicking convolution neural network and quantum wavelet transform-based image denoising
    Chinnaiyan, Anitha Mary
    Alfred Sylam, Boyed Wesley
    NETWORK-COMPUTATION IN NEURAL SYSTEMS, 2024,
  • [38] Chest X-ray image denoising method based on deep convolution neural network
    Jin, Yan
    Jiang, Xiao-Ben
    Wei, Zhen-kun
    Li, Yuan
    IET IMAGE PROCESSING, 2019, 13 (11) : 1970 - 1978
  • [39] FCNet: a deep neural network based on multi-channel feature cascading for image denoising
    Feng, Siling
    Qi, Zhisheng
    Zhang, Guirong
    Lin, Cong
    Huang, Mengxing
    JOURNAL OF SUPERCOMPUTING, 2024, 80 (12) : 17042 - 17067
  • [40] Deep Convolutional Neural Network Based on Multi-Scale Feature Extraction for Image Denoising
    Zhang, Jing
    Sang, Liu
    Wan, Zekang
    Wang, Yuchen
    Li, Yunsong
    2020 IEEE INTERNATIONAL CONFERENCE ON VISUAL COMMUNICATIONS AND IMAGE PROCESSING (VCIP), 2020, : 213 - 216