GENIUS-MAWII: for robust Mendelian randomization with many weak invalid instruments

被引:5
作者
Ye, Ting [1 ,5 ]
Liu, Zhonghua [2 ]
Sun, Baoluo [3 ]
Tchetgen, Eric Tchetgen [4 ]
机构
[1] Univ Washington, Dept Biostat, Seattle, WA USA
[2] Columbia Univ, Dept Biostat, New York, NY USA
[3] Natl Univ Singapore, Dept Stat & Data Sci, Singapore, Singapore
[4] Univ Penn, Wharton Sch, Dept Stat & Data Sci, Philadelphia, PA USA
[5] Univ Washington, Hans Rosling Ctr Populat Hlth, Dept Biostat, 3980 15th Ave NE,Box 351617, Seattle, WA 98195 USA
关键词
causal inference; exclusion restriction; heteroscedastic errors; instrumental variables; many weak moments; pleiotropy; BODY-MASS INDEX; GENERALIZED-METHOD; EMPIRICAL LIKELIHOOD; ASYMPTOTIC EFFICIENCY; CONSISTENT ESTIMATION; VARIABLES ESTIMATION; GENETIC-VARIANTS; IDENTIFICATION; PLEIOTROPY; MOMENTS;
D O I
10.1093/jrsssb/qkae024
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Mendelian randomization (MR) addresses causal questions using genetic variants as instrumental variables. We propose a new MR method, G-Estimation under No Interaction with Unmeasured Selection (GENIUS)-MAny Weak Invalid IV, which simultaneously addresses the 2 salient challenges in MR: many weak instruments and widespread horizontal pleiotropy. Similar to MR-GENIUS, we use heteroscedasticity of the exposure to identify the treatment effect. We derive influence functions of the treatment effect, and then we construct a continuous updating estimator and establish its asymptotic properties under a many weak invalid instruments asymptotic regime by developing novel semiparametric theory. We also provide a measure of weak identification, an overidentification test, and a graphical diagnostic tool.
引用
收藏
页码:1045 / 1067
页数:23
相关论文
共 84 条
  • [81] A generalized robust allele-based genetic association test
    Zhang, Lin
    Sun, Lei
    [J]. BIOMETRICS, 2022, 78 (02) : 487 - 498
  • [82] STATISTICAL INFERENCE IN TWO-SAMPLE SUMMARY-DATA MENDELIAN RANDOMIZATION USING ROBUST ADJUSTED PROFILE SCORE
    Zhao, Qingyuan
    Wang, Jingshu
    Hemani, Gibran
    Bowden, Jack
    Small, Dylan S.
    [J]. ANNALS OF STATISTICS, 2020, 48 (03) : 1742 - 1769
  • [83] Powerful three-sample genome-wide design and robust statistical inference in summary-data Mendelian randomization
    Zhao, Qingyuan
    Chen, Yang
    Wang, Jingshu
    Small, Dylan S.
    [J]. INTERNATIONAL JOURNAL OF EPIDEMIOLOGY, 2019, 48 (05) : 1478 - 1492
  • [84] Recent Developments in Mendelian Randomization Studies
    Jie Zheng
    Denis Baird
    Maria-Carolina Borges
    Jack Bowden
    Gibran Hemani
    Philip Haycock
    David M. Evans
    George Davey Smith
    [J]. Current Epidemiology Reports, 2017, 4 (4) : 330 - 345