GENIUS-MAWII: for robust Mendelian randomization with many weak invalid instruments

被引:5
作者
Ye, Ting [1 ,5 ]
Liu, Zhonghua [2 ]
Sun, Baoluo [3 ]
Tchetgen, Eric Tchetgen [4 ]
机构
[1] Univ Washington, Dept Biostat, Seattle, WA USA
[2] Columbia Univ, Dept Biostat, New York, NY USA
[3] Natl Univ Singapore, Dept Stat & Data Sci, Singapore, Singapore
[4] Univ Penn, Wharton Sch, Dept Stat & Data Sci, Philadelphia, PA USA
[5] Univ Washington, Hans Rosling Ctr Populat Hlth, Dept Biostat, 3980 15th Ave NE,Box 351617, Seattle, WA 98195 USA
关键词
causal inference; exclusion restriction; heteroscedastic errors; instrumental variables; many weak moments; pleiotropy; BODY-MASS INDEX; GENERALIZED-METHOD; EMPIRICAL LIKELIHOOD; ASYMPTOTIC EFFICIENCY; CONSISTENT ESTIMATION; VARIABLES ESTIMATION; GENETIC-VARIANTS; IDENTIFICATION; PLEIOTROPY; MOMENTS;
D O I
10.1093/jrsssb/qkae024
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Mendelian randomization (MR) addresses causal questions using genetic variants as instrumental variables. We propose a new MR method, G-Estimation under No Interaction with Unmeasured Selection (GENIUS)-MAny Weak Invalid IV, which simultaneously addresses the 2 salient challenges in MR: many weak instruments and widespread horizontal pleiotropy. Similar to MR-GENIUS, we use heteroscedasticity of the exposure to identify the treatment effect. We derive influence functions of the treatment effect, and then we construct a continuous updating estimator and establish its asymptotic properties under a many weak invalid instruments asymptotic regime by developing novel semiparametric theory. We also provide a measure of weak identification, an overidentification test, and a graphical diagnostic tool.
引用
收藏
页码:1045 / 1067
页数:23
相关论文
共 84 条
  • [11] Burgess S, 2015, AM J EPIDEMIOL, V181, P251, DOI 10.1093/aje/kwu283
  • [12] Mendelian Randomization Analysis With Multiple Genetic Variants Using Summarized Data
    Burgess, Stephen
    Butterworth, Adam
    Thompson, Simon G.
    [J]. GENETIC EPIDEMIOLOGY, 2013, 37 (07) : 658 - 665
  • [13] Avoiding bias from weak instruments in Mendelian randomization studies
    Burgess, Stephen
    Thompson, Simon G.
    [J]. INTERNATIONAL JOURNAL OF EPIDEMIOLOGY, 2011, 40 (03) : 755 - 764
  • [14] Bias in causal estimates from Mendelian randomization studies with weak instruments
    Burgess, Stephen
    Thompson, Simon G.
    [J]. STATISTICS IN MEDICINE, 2011, 30 (11) : 1312 - 1323
  • [15] ASYMPTOTIC EFFICIENCY IN ESTIMATION WITH CONDITIONAL MOMENT RESTRICTIONS
    CHAMBERLAIN, G
    [J]. JOURNAL OF ECONOMETRICS, 1987, 34 (03) : 305 - 334
  • [16] Consistent estimation with a large number of weak instruments
    Chao, JC
    Swanson, NR
    [J]. ECONOMETRICA, 2005, 73 (05) : 1673 - 1692
  • [17] Double/debiased machine learning for treatment and structural parameters
    Chernozhukov, Victor
    Chetverikov, Denis
    Demirer, Mert
    Duflo, Esther
    Hansen, Christian
    Newey, Whitney
    Robins, James
    [J]. ECONOMETRICS JOURNAL, 2018, 21 (01) : C1 - C68
  • [18] Mendelian randomization: genetic anchors for causal inference in epidemiological studies
    Davey Smith, George
    Hemani, Gibran
    [J]. HUMAN MOLECULAR GENETICS, 2014, 23 : R89 - R98
  • [19] Genetic pleiotropy between age-related macular degeneration and 16 complex diseases and traits
    Grassmann, Felix
    Kiel, Christina
    Zimmermann, Martina E.
    Gorski, Mathias
    Grassmann, Veronika
    Stark, Klaus
    Heid, Iris M.
    Weber, Bernhard H. F.
    [J]. GENOME MEDICINE, 2017, 9
  • [20] Genetic pleiotropy in complex traits and diseases: implications for genomic medicine
    Gratten, Jacob
    Visscher, Peter M.
    [J]. GENOME MEDICINE, 2016, 8