GENIUS-MAWII: for robust Mendelian randomization with many weak invalid instruments

被引:5
作者
Ye, Ting [1 ,5 ]
Liu, Zhonghua [2 ]
Sun, Baoluo [3 ]
Tchetgen, Eric Tchetgen [4 ]
机构
[1] Univ Washington, Dept Biostat, Seattle, WA USA
[2] Columbia Univ, Dept Biostat, New York, NY USA
[3] Natl Univ Singapore, Dept Stat & Data Sci, Singapore, Singapore
[4] Univ Penn, Wharton Sch, Dept Stat & Data Sci, Philadelphia, PA USA
[5] Univ Washington, Hans Rosling Ctr Populat Hlth, Dept Biostat, 3980 15th Ave NE,Box 351617, Seattle, WA 98195 USA
关键词
causal inference; exclusion restriction; heteroscedastic errors; instrumental variables; many weak moments; pleiotropy; BODY-MASS INDEX; GENERALIZED-METHOD; EMPIRICAL LIKELIHOOD; ASYMPTOTIC EFFICIENCY; CONSISTENT ESTIMATION; VARIABLES ESTIMATION; GENETIC-VARIANTS; IDENTIFICATION; PLEIOTROPY; MOMENTS;
D O I
10.1093/jrsssb/qkae024
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Mendelian randomization (MR) addresses causal questions using genetic variants as instrumental variables. We propose a new MR method, G-Estimation under No Interaction with Unmeasured Selection (GENIUS)-MAny Weak Invalid IV, which simultaneously addresses the 2 salient challenges in MR: many weak instruments and widespread horizontal pleiotropy. Similar to MR-GENIUS, we use heteroscedasticity of the exposure to identify the treatment effect. We derive influence functions of the treatment effect, and then we construct a continuous updating estimator and establish its asymptotic properties under a many weak invalid instruments asymptotic regime by developing novel semiparametric theory. We also provide a measure of weak identification, an overidentification test, and a graphical diagnostic tool.
引用
收藏
页码:1045 / 1067
页数:23
相关论文
共 84 条
  • [1] Asymptotic Efficiency of Semiparametric Two-step GMM
    Ackerberg, Daniel
    Chen, Xiaohong
    Hahn, Jinyong
    Liao, Zhipeng
    [J]. REVIEW OF ECONOMIC STUDIES, 2014, 81 (03) : 919 - 943
  • [2] The gene-based hack that is revolutionizing epidemiology
    Adam D.
    [J]. Nature, 2019, 576 (7786) : 196 - 199
  • [3] Instrumental variables and the search for identification: From supply and demand to natural experiments
    Angrist, JD
    Krueger, AB
    [J]. JOURNAL OF ECONOMIC PERSPECTIVES, 2001, 15 (04) : 69 - 85
  • [4] Instrumental variable methods for causal inference
    Baiocchi, Michael
    Cheng, Jing
    Small, Dylan S.
    [J]. STATISTICS IN MEDICINE, 2014, 33 (13) : 2297 - 2340
  • [5] Bickel P.J., 1993, EFFICIENT ADAPTIVE E, V4
  • [6] Consistent Estimation in Mendelian Randomization with Some Invalid Instruments Using a Weighted Median Estimator
    Bowden, Jack
    Smith, George Davey
    Haycock, Philip C.
    Burgess, Stephen
    [J]. GENETIC EPIDEMIOLOGY, 2016, 40 (04) : 304 - 314
  • [7] Mendelian randomization with invalid instruments: effect estimation and bias detection through Egger regression
    Bowden, Jack
    Smith, George Davey
    Burgess, Stephen
    [J]. INTERNATIONAL JOURNAL OF EPIDEMIOLOGY, 2015, 44 (02) : 512 - 525
  • [8] TWO-STEP SEMIPARAMETRIC EMPIRICAL LIKELIHOOD INFERENCE
    Bravo, Francesco
    Carlos Escanciano, Juan
    Van Keilegom, Ingrid
    [J]. ANNALS OF STATISTICS, 2020, 48 (01) : 1 - 26
  • [9] A review of instrumental variable estimators for Mendelian randomization
    Burgess, Stephen
    Small, Dylan S.
    Thompson, Simon G.
    [J]. STATISTICAL METHODS IN MEDICAL RESEARCH, 2017, 26 (05) : 2333 - 2355
  • [10] Mendelian randomization: where are we now and where are we going?
    Burgess, Stephen
    Timpson, Nicholas J.
    Ebrahim, Shah
    Smith, George Davey
    [J]. INTERNATIONAL JOURNAL OF EPIDEMIOLOGY, 2015, 44 (02) : 379 - 388