Two-Stage Deep Learning Segmentation for Tiny Brain Regions

被引:0
作者
Ren, Yan [1 ,2 ]
Zheng, Xiawu [3 ]
Ji, Rongrong [3 ]
Chen, Jie [1 ,2 ,4 ]
机构
[1] Peking Univ, Sch Elect & Comp Engn, Shenzhen, Peoples R China
[2] Peking Univ, Shenzhen Grad Sch, AI Sci AI4S Preferred Program, Shenzhen, Peoples R China
[3] Xiamen Univ, Sch Informat, Dept Artificial Intelligence, Media Analyt & Comp Lab, Xiamen, Peoples R China
[4] Peng Cheng Lab, Shenzhen, Peoples R China
来源
PATTERN RECOGNITION AND COMPUTER VISION, PRCV 2023, PT XIII | 2024年 / 14437卷
基金
国家重点研发计划;
关键词
Brain Region Segmentation; Two-stage Segmentation; Small Object Distribution Map; MODEL; CT;
D O I
10.1007/978-981-99-8558-6_15
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Accurate segmentation of brain regions has become increasingly important in the early diagnosis of brain diseases. Widely used methods for brain region segmentation usually rely on atlases and deformations, which require manual intervention and do not focus on tiny object segmentation. To address the challenge of tiny brain regions segmentation, we propose a two-stage segmentation network based on deep learning, using both 2D and 3D convolution. We first introduce the concept of the Small Object Distribution Map (SODM), allowing the model to perform coarse-to-fine segmentation for objects of different scales. Then, a contrastive loss function is implemented to automatically mine difficult negative samples, and two attention modules are added to assist in the accurate generation of the small object distribution map. Experimental results on a dataset of 120 brain MRI demonstrate that our method outperforms existing approaches in terms of objective evaluation metrics and subjective visual effects and shows promising potential for assisting in the diagnosis of brain diseases.
引用
收藏
页码:174 / 184
页数:11
相关论文
共 16 条
  • [1] Cicek Ozgun, 2016, Medical Image Computing and Computer-Assisted Intervention - MICCAI 2016. 19th International Conference. Proceedings: LNCS 9901, P424, DOI 10.1007/978-3-319-46723-8_49
  • [2] de Brebisson Alexandre, 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), P20, DOI 10.1109/CVPRW.2015.7301312
  • [3] A combined region growing and deformable model method for extraction of closed surfaces in 3D CT and MRI scans
    del Fresno, M.
    Venere, M.
    Clausse, A.
    [J]. COMPUTERIZED MEDICAL IMAGING AND GRAPHICS, 2009, 33 (05) : 369 - 376
  • [4] nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation
    Isensee, Fabian
    Jaeger, Paul F.
    Kohl, Simon A. A.
    Petersen, Jens
    Maier-Hein, Klaus H.
    [J]. NATURE METHODS, 2021, 18 (02) : 203 - +
  • [5] Jaccard Paul, 1912, NEW PHYTOL, V11, P37, DOI [10.1111/j.1469-8137.1912.tb05611.x, DOI 10.1111/J.1469-8137.1912.TB05611.X]
  • [6] SNAKES - ACTIVE CONTOUR MODELS
    KASS, M
    WITKIN, A
    TERZOPOULOS, D
    [J]. INTERNATIONAL JOURNAL OF COMPUTER VISION, 1987, 1 (04) : 321 - 331
  • [7] A dynamic 4D probabilistic atlas of the developing brain
    Kuklisova-Murgasova, Maria
    Aljabar, Paul
    Srinivasan, Latha
    Counsell, Serena J.
    Doria, Valentina
    Serag, Ahmed
    Gousias, Ioannis. S.
    Boardman, James P.
    Rutherford, Mary A.
    Edwards, A. David
    Hajnal, Joseph V.
    Rueckert, Daniel
    [J]. NEUROIMAGE, 2011, 54 (04) : 2750 - 2763
  • [8] Two-Stage Liver and Tumor Segmentation Algorithm Based on Convolutional Neural Network
    Meng, Lu
    Zhang, Qianqian
    Bu, Sihang
    [J]. DIAGNOSTICS, 2021, 11 (10)
  • [9] Fast and globally convex multiphase active contours for brain MRI segmentation
    Moreno, Juan C.
    Prasath, V. B. Surya
    Proenca, Hugo
    Palaniappan, K.
    [J]. COMPUTER VISION AND IMAGE UNDERSTANDING, 2014, 125 : 237 - 250
  • [10] Naz F., 2020, Open Biol J, V8, P6, DOI [10.2174/1874196702008010006, DOI 10.2174/1874196702008010006]