MGAF-net: Gaussian saliency features guided infrared small target detection network

被引:1
作者
Ren, Xiangyang [1 ]
Wu, Yan [1 ]
Gao, Jianbo [1 ]
Yang, Zhen [2 ]
机构
[1] Zhengzhou Univ, Affiliated Hosp 1, Med 3D Printing Ctr Henan Prov, Zhengzhou, Peoples R China
[2] Zhengzhou Univ, Zhengzhou, Peoples R China
关键词
computer vision; image segmentation; DIM;
D O I
10.1049/ell2.13052
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Robust infrared dim small target detection under sparse features is a difficult problem in the field of small target detection. Therefore, in order to solve this problem, this paper proposes an infrared dim small target detection network based on multi-scale Gaussian significance and attention feature fusion (MGAF)-net. In MGAF-net, MGAF module is proposed to extract multi-scale Gaussian saliency features of small targets. At the same time, in order to better fuse the multi-scale Gaussian saliency features of the target, the attention mechanism is introduced in the MGAF module to enrich the feature expression of the target. The experimental results show that the proposed detection method has higher detection accuracy and higher detection speed than the existing advanced infrared dim small target detection methods. This paper proposes an infrared dim small target detection network based on multi-scale Gaussian significance and attention feature fusion (MGAF)-net. MGAF-net solves the problem of small target detection under sparse features.image
引用
收藏
页数:3
相关论文
共 14 条
  • [1] Infrared Ship Target Segmentation Based on Spatial Information Improved FCM
    Bai, Xiangzhi
    Chen, Zhiguo
    Zhang, Yu
    Liu, Zhaoying
    Lu, Yi
    [J]. IEEE TRANSACTIONS ON CYBERNETICS, 2016, 46 (12) : 3259 - 3271
  • [2] Infrared Patch-Image Model for Small Target Detection in a Single Image
    Gao, Chenqiang
    Meng, Deyu
    Yang, Yi
    Wang, Yongtao
    Zhou, Xiaofang
    Hauptmann, Alexander G.
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2013, 22 (12) : 4996 - 5009
  • [3] A Local Contrast Method for Infrared Small-Target Detection Utilizing a Tri-Layer Window
    Han, Jinhui
    Moradi, Saed
    Faramarzi, Iman
    Liu, Chengyin
    Zhang, Honghui
    Zhao, Qian
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2020, 17 (10) : 1822 - 1826
  • [4] Infrared Small Target Detection Utilizing the Multiscale Relative Local Contrast Measure
    Han, Jinhui
    Liang, Kun
    Zhou, Bo
    Zhu, Xinying
    Zhao, Jie
    Zhao, Linlin
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2018, 15 (04) : 612 - 616
  • [5] ISTDU-Net: Infrared Small-Target Detection U-Net
    Hou, Qingyu
    Zhang, Liuwei
    Tan, Fanjiao
    Xi, Yuyang
    Zheng, Haoliang
    Li, Na
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [6] [回丙伟 Hui Bingwei], 2020, [中国科学数据, China Scientific Data], V5, P1
  • [7] Small Target Detection Utilizing Robust Methods of the Human Visual System for IRST
    Kim, Sungho
    Yang, Yukyung
    Lee, Joohyoung
    Park, Yongchan
    [J]. JOURNAL OF INFRARED MILLIMETER AND TERAHERTZ WAVES, 2009, 30 (09) : 994 - 1011
  • [8] Infrared Small Target Detection Network With Generate Label and Feature Mapping
    Ma, Tianlei
    Yang, Zhen
    Wang, Jiaqi
    Sun, Siyuan
    Ren, Xiangyang
    Ahmad, Usman
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [9] U-Net: Convolutional Networks for Biomedical Image Segmentation
    Ronneberger, Olaf
    Fischer, Philipp
    Brox, Thomas
    [J]. MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION, PT III, 2015, 9351 : 234 - 241
  • [10] Infrared Dim and Small Target Detection via Multiple Subspace Learning and Spatial-Temporal Patch-Tensor Model
    Sun, Yang
    Yang, Jungang
    An, Wei
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2021, 59 (05): : 3737 - 3752