Single-cell Mayo Map (scMayoMap): an easy-to-use tool for cell type annotation in single-cell RNA-sequencing data analysis

被引:12
作者
Yang, Lu [1 ,2 ]
Ng, Yan Er [3 ]
Sun, Haipeng [4 ]
Li, Ying [5 ]
Chini, Lucas C. S. [3 ]
Lebrasseur, Nathan K. [3 ,6 ]
Chen, Jun [1 ,2 ]
Zhang, Xu [3 ,7 ]
机构
[1] Mayo Clin, Dept Quantitat Hlth Sci, Div Computat Biol, Rochester, MN 55905 USA
[2] Mayo Clin, Ctr Individualized Med, Rochester, MN 55905 USA
[3] Mayo Clin, Robert & Arlene Kogod Ctr Aging, Rochester, MN 55905 USA
[4] Rutgers State Univ, Dept Biochem & Microbiol, New Brunswick, NJ 08901 USA
[5] Mayo Clin, Dept Quantitat Hlth Sci, Jacksonville, FL 32224 USA
[6] Mayo Clin, Dept Phys Med & Rehabil, Rochester, MN 55905 USA
[7] Mayo Clin, Dept Biochem & Mol Biol, Rochester, MN 55905 USA
基金
美国国家卫生研究院;
关键词
Single-cell RNA-sequencing; Cell type annotation; Cell type markers; scMayoMap; scMayoMapDatabase; ATLAS;
D O I
10.1186/s12915-023-01728-6
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Background Single-cell RNA-sequencing (scRNA-seq) has become a widely used tool for both basic and translational biomedical research. In scRNA-seq data analysis, cell type annotation is an essential but challenging step. In the past few years, several annotation tools have been developed. These methods require either labeled training/reference datasets, which are not always available, or a list of predefined cell subset markers, which are subject to biases. Thus, a user-friendly and precise annotation tool is still critically needed.Results We curated a comprehensive cell marker database named scMayoMapDatabase and developed a companion R package scMayoMap, an easy-to-use single-cell annotation tool, to provide fast and accurate cell type annotation. The effectiveness of scMayoMap was demonstrated in 48 independent scRNA-seq datasets across different platforms and tissues. Additionally, the scMayoMapDatabase can be integrated with other tools and further improve their performance.Conclusions scMayoMap and scMayoMapDatabase will help investigators to define the cell types in their scRNA-seq data in a streamlined and user-friendly way.
引用
收藏
页数:10
相关论文
共 50 条
[31]   The heterogeneity of fibrosis and angiogenesis in endometriosis revealed by single-cell RNA-sequencing [J].
Zhu, Shu ;
Wang, Anqi ;
Xu, Wei ;
Hu, Longfei ;
Sun, Jiafan ;
Wang, Xiuli .
BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR BASIS OF DISEASE, 2023, 1869 (02)
[32]   Dissect the Heterogeneity of BFU-Es through Single-cell RNA-sequencing Data [J].
孙莉莉 ;
徐长禄 .
科技经济导刊, 2018, (28) :154-155
[33]   scShapes: a statistical framework for identifying distribution shapes in single-cell RNA-sequencing data [J].
Dharmaratne, Malindrie ;
Kulkarni, Ameya S. ;
Fard, Atefeh Taherian ;
Mar, Jessica C. .
GIGASCIENCE, 2023, 12
[34]   Navigating single-cell RNA-sequencing: protocols, tools, databases, and applications [J].
Ankish Arya ;
Prabhat Tripathi ;
Nidhi Dubey ;
Imlimaong Aier ;
Pritish Kumar Varadwaj .
Genomics & Informatics, 23 (1)
[35]   Single-cell RNA-sequencing of human eosinophils in allergic inflammation in the esophagus [J].
Morgenstern, Netali Ben-Baruch ;
Rochman, Mark ;
Kotliar, Michael ;
Dunn, Julia L. M. ;
Mack, Lydia ;
Besse, John ;
Natale, Mia A. ;
Klingler, Andrea M. ;
Felton, Jennifer M. ;
Caldwell, Julie M. ;
Barski, Artem ;
Rothenberg, Marc E. .
JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY, 2024, 154 (04) :974-987
[36]   IBRAP: integrated benchmarking single-cell RNA-sequencing analytical pipeline [J].
Knight, Connor H. ;
Khan, Faraz ;
Patel, Ankit ;
Gill, Upkar S. ;
Okosun, Jessica ;
Wang, Jun .
BRIEFINGS IN BIOINFORMATICS, 2023, 24 (02)
[37]   Accounting for technical noise in Bayesian graphical models of single-cell RNA-sequencing data [J].
Oh, Jihwan ;
Chang, Changgee ;
Long, Qi .
BIOSTATISTICS, 2022, 24 (01) :161-176
[38]   IKAP-Identifying K mAjor cell Population groups in single-cell RNA-sequencing analysis [J].
Chen, Yun-Ching ;
Suresh, Abhilash ;
Underbayev, Chingiz ;
Sun, Clare ;
Singh, Komudi ;
Seifuddin, Fayaz ;
Wiestner, Adrian ;
Pirooznia, Mehdi .
GIGASCIENCE, 2019, 8 (10)
[39]   Combining bulk RNA-sequencing and single-cell RNA-sequencing data to reveal the immune microenvironment and metabolic pattern of osteosarcoma [J].
Huang, Ruichao ;
Wang, Xiaohu ;
Yin, Xiangyun ;
Zhou, Yaqi ;
Sun, Jiansheng ;
Yin, Zhongxiu ;
Zhu, Zhi .
FRONTIERS IN GENETICS, 2022, 13
[40]   An overview of computational methods in single-cell transcriptomic cell type annotation [J].
Li, Tianhao ;
Wang, Zixuan ;
Liu, Yuhang ;
He, Sihan ;
Zou, Quan ;
Zhang, Yongqing .
BRIEFINGS IN BIOINFORMATICS, 2025, 26 (03)