Spectral function distributions in the correlated Anderson model

被引:5
作者
Khan, Niaz Ali [1 ,2 ]
机构
[1] Zhejiang Normal Univ, Dept Phys, Jinhua 321004, Peoples R China
[2] Zhejiang Normal Univ, Zhejiang Inst Optoelect, Jinhua 321004, Peoples R China
关键词
Anderson localization; Spectral function distribution; Kernel polynomial method; Disordered systems; STATES; DENSITY;
D O I
10.1016/j.cjph.2023.07.011
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We report numerical calculations of the probability distribution of a single-particle spectral function of a non-interacting one-dimensional tight-binding chain with power-law correlated disorder. For the numerical computations of the spectral function, we employ a highly efficient and very stable algorithm-Kernel Polynomial Method-which has O(������) numerical complexity. We find a universal and highly asymmetric distribution of the spectral function in the vicinity of the metal-insulator transition at the band center. Moreover, the distributions show a Gaussian nature deeply in the localized regime and a log-normal behavior in the delocalized regime.
引用
收藏
页码:733 / 740
页数:8
相关论文
共 50 条
  • [11] SPECTRAL DISTRIBUTIONS OF ADJACENCY AND LAPLACIAN MATRICES OF RANDOM GRAPHS
    Ding, Xue
    Jiang, Tiefeng
    ANNALS OF APPLIED PROBABILITY, 2010, 20 (06) : 2086 - 2117
  • [12] Spectral functions of one-dimensional systems with correlated disorder
    Khan, N. A.
    Viana Parente Lopes, J. M.
    Santos Pires, J. P.
    Lopes dos Santos, J. M. B.
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2019, 31 (17)
  • [13] Anderson localization in 1D systems with correlated disorder
    A. Croy
    P. Cain
    M. Schreiber
    The European Physical Journal B, 2011, 82 : 107 - 112
  • [14] Application of the locally self-consistent embedding approach to the Anderson model with non-uniform random distributions
    Tam, K-M
    Zhang, Y.
    Terletska, H.
    Wang, Y.
    Eisenbach, M.
    Chioncel, L.
    Moreno, J.
    ANNALS OF PHYSICS, 2021, 435
  • [15] Finite-size scaling of correlation functions in the one-dimensional Anderson-Hubbard model
    Nishimoto, Satoshi
    Shirakawa, Tomonori
    PHYSICAL REVIEW B, 2010, 81 (11):
  • [16] Anderson localization of circularly polarized waves in a gyrotropic superlattice with correlated disorder
    Makarov, N. M.
    Pritula, G. M.
    Vekslerchik, V. E.
    Usatenko, O. V.
    Yampol'skii, V. A.
    LOW TEMPERATURE PHYSICS, 2024, 50 (12) : 1057 - 1066
  • [17] Anderson Localization for the Holstein Model
    G. Gentile
    V. Mastropietro
    Communications in Mathematical Physics, 2000, 215 : 69 - 103
  • [18] Incipient localization in the Anderson model
    Uski, V
    Mehlig, B
    Römer, RA
    Schreiber, M
    PHYSICA B-CONDENSED MATTER, 2000, 284 : 1934 - 1935
  • [19] Anomalously suppressed localization in the two-channel Anderson model
    Ba Phi Nguyen
    Kim, Kihong
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2012, 24 (13)
  • [20] Decay of the Green's Function of the Fractional Anderson Model and Connection to Long-Range SAW
    Disertori, Margherita
    Escobar, Roberto Maturana
    Rojas-Molina, Constanza
    JOURNAL OF STATISTICAL PHYSICS, 2024, 191 (03)